
When AVD Multi-Session, Windows App
Runtime 1.4 and AppX Collide

A Cross-Layer Failure and How We Operationalized the Fix

Introduction

Everything looked healthy. Applications were installed. Profiles mounted correctly. App Attach was working. Intune

policies were compliant. And yet, packaged apps randomly refused to launch. This is the story of a production AVD

environment where the symptom appeared at the application layer, but the root cause lived beneath it—in platform

dependencies most teams never check.

The Symptom

Across multiple AVD multi-session host pools, packaged applications began failing at launch.

Error Messages "Can't open this app."
"Windows cannot access the specified device or path."

Event Viewer Error Code: 0x80070005
AppXDeploymentServer Event ID 404

What We Ruled Out (The Wrong Path)

Because the environment runs AVD Multi-session with FSLogix profile containers, FSLogix was an early suspect.

We tested extensively:

• Clearing and recreating profile containers

• Clean user profiles

• Moving users across hosts

• Validating profile mount behavior

None of these actions changed the outcome. The issue was host-level, not user-profile-related.



Root Cause

Windows App Runtime 1.4 was found in a NeedsRemediation state.

In multi-session AVD, this runtime is a shared framework dependency used by MSIX applications. Once degraded,

activation attempts triggered repeated repair behavior, causing Event ID 404 and launch failures. The platform was

trying to heal itself but failing—indefinitely.



The Mitigation: Immediate Fix

The immediate remediation was surgical:

1. Detect NeedsRemediation state

2. Restart AppXSVC (Application Experience Service)

3. Re-provision Windows App Runtime 1.4 machine-wide

This restored runtime integrity and stabilized application launches immediately.

Operationalizing the Fix: Sustainable Architecture

Instead of manual repair, an event-triggered Scheduled Task was deployed to every host pool.

Execution Context Runs as SYSTEM

Trigger Event ID 404 (filtered to WindowsAppRuntime 1.4)

Action Executes remediation script automatically

Result Platform became self-healing

Scaling with Intune: Platform-Wide Deployment

The mitigation was packaged as an Intune Win32 application for platform-wide consistency:

✓ Copies Windows App Runtime 1.4 MSIX locally

✓ Deploys the remediation script

✓ Registers the Scheduled Task

✓ Uses a detection script to ensure task presence

This ensured idempotent deployment and platform-wide consistency across all host pools.

Lessons Learned

• Not every app failure is a profile issue.

The symptom was at the application layer, but the problem was framework-level.



• Framework health is a shared platform dependency.

In multi-session AVD, OS runtime integrity affects all users simultaneously.

• The immediate fix was technical. The sustainable solution was architectural.

One-off repairs don't scale. Automation and self-healing do.

In multi-session AVD environments, stability depends on understanding hidden

framework dependencies beneath App Attach, FSLogix, and Intune.

When Windows App Runtime degraded, the symptom appeared at the application

layer. The root cause was platform state. The immediate fix was technical. The

sustainable solution was architectural.



About the Author

Menahem Suissa is a Modern Workplace & Security Consultant specializing in Azure Virtual Desktop, Microsoft

Intune, App Attach, and enterprise endpoint architecture. He focuses on real-world production environments,

designing stable, scalable, and secure cloud workplace platforms. His work emphasizes cross-layer platform

thinking, automation, and operational resilience in multi-session AVD environments. Menahem actively contributes

to the Microsoft community and is building a series of deep-dive architectural case studies based on real enterprise

experience.

This case study is based on real enterprise production experience.

For questions or collaboration: connect on LinkedIn or visit your website


