From Breadboard
Prototype to Custom PCB

ESP32

Spectrum One WiFi Activity Monitor

ESP32 WiFi Activity Monitor

Spectrum One

From Breadboard Prototype to Custom PCB

Jay J. Reszka
Currenari Lab
England
February 2026

Copyright

© 2026 Jarostaw Reszka
Published under the pen name Jay J. Reszka
First published by Currenari Lab, England, 2026

This second edition of this work is licensed under

Creative Commons Attribution—-NonCommercial-ShareAlike 4.0
(CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
Non-commercial sharing and adaptation are permitted

with appropriate attribution and distribution

under the same license.

Open source hardware
OSHWA UID: UK000086

Book and associated builds
https://currenari.com/spectrum-one/

Source files and repositories
https://github.com/currenari/spectrum-one

Jay J. Reszka asserts moral rights
to be identified as the author of this work.

All trademarks and registered trademarks
belong to their respective owners.

Second edition

Dedication

For my granddaughter Amelia.
So you have something made by my hands, not just my words.
You build things. You take things apart.
You try, you fail, and you try again.

Never give up. If you want something, you go for it.

If one day you open this and recognise that feeling,
then this book has done its job.

Keep building. Stay curious. I'm proud of you.
For my future wife Ina,
for patience, support, and for making space for this to exist.
Without your love and support, this book would not exist.
—Jay

Preface

This document is a reference build and design archive for
Spectrum One.

It exists as a practical record of a hardware project that can
be returned to after notes are lost, files are buried, or details
fade. A physical book remains one of the most reliable forms
of technical reference, and this manuscript is intended to
serve that role.

The material documents a complete ESP32-based hard-
ware project from early idea prototyping through to a finished,
reproducible build. The project is presented as it actually
developed. Design decisions, constraints, and trade-offs are
preserved rather than replaced with an idealised or optimised
narrative.

The system began as a loose prototype assembled with
jumper wires and an expansion adapter kit. As features were
added, revised, and sometimes discarded, mechanical insta-
bility became a limiting factor. This progression ultimately
led from ad-hoc prototyping to a consolidated breadboard
build and, finally, to a dedicated printed circuit board.

For clarity and ease of reference, all build figures are col-
lected in a dedicated section at the end of the book. Figures
are referenced by number at the point where they are contex-
tually relevant.

Contents

Copyright
Dedication
Preface

1 Introduction
1.1 WhyIBuiltlt
1.2 Who This ProjectIsFor
1.3 What ThisBookCovers

2 Project Requirements
2.1 Hardware
ESP32 DevelopmentBoard
Breadboards
LEDBarArray
ICDModule.
PushButton
Passive Components
Wiring Materials
2.2 Software
Development Environment
ESP32 Toolchain
Serial Monitor
OptionalTools
2.3 Notes on Component Sources

3 The ESP32 Development Board Reference
3.1 What an ESP32 development boardis
3.2 What “ESP32-WROOM-32" refersto

ii

3.3 Why development boards differ
3.4 Implicit electrical contracts of development
boards
3.5 Reference board used in this project
3.6 Why breadboards change ESP32 operation
3.7 Understanding pinroles
3.8 Pinstateacrossreset
3.9 Why pinouts look complex
Input-onlypins
Boot-sensitivepins
TheENpin
TheVINpin.
3.10 Silkscreen labels and D-pin markings
3.11 Pin selection and design discipline
3.12 Why two identical boards differ
3.13 The ESP32 ecosystem in context
3.14 What this chapter is protecting you from
3.15 Terminology used in this chapter
Pinout.
GPIO pin assignments
3.16 Reference figures and verification
3.17 Real-world examples of board-level differences
causing failure
Product failures caused by ESP32 board and
variant assumptions
Field devices rendered inoperable by board-
dependent boot operation
Instability reported across “identical” ESP32
boards,
Evidence from broader IoT failure analysis . . .
3.18 Why these examples matter for Spectrum One .
3.19 References

4 When the ESP32 Only Knows Itself

22
22
22
23

24

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

The ESP32 only knows itself
PinsarenotGPIOs
Why this feels counter-intuitive
Silkscreen labels are not authoritative
The translation step that always matters
What the development board actually defines . .
What software cannottellyou
The GPIO matrix and the illusion of rerouting . .
What softwarecandoinstead
Example: confirming a GPIO mapping
Asilent failure
Boot-sensitive pins and early failure
The RF shield and misleading clues
4.10 Core insight
4.11 Reference figure 3

5 Breadboard layout and mechanical preparation

5.1

Physical layout and spacing

6 Breadboard modification sequence

6.1
6.2
6.3

Mounting and alignment
Alignmentcheck
Multi-board compatibility

7 Breadboard component placement

7.1
7.2
7.3
7.4
7.5

7.6
7.7
7.8
7.9

Placement as design thinking
ESP32 development board placement
LED bar array placement
Resistor placement
Push button placement
Internal switch structure and operation
Capacitor placement
Wiring length and intent
Interpretation of the reference layout
What this layout teaches before PCB design . . .

iii

24
25
26
26
26
27
27

28
29
29
30
30
30
30

31
31

33
34
34
35

36
36
36
37
37
38
38
38
39
39
40

iv

8 Breadboard Wiring 41

8.1 What this chaptercovers 41
8.2 Why breadboard wiring fails without structure . 41
Schematics collapse time 42
Breadboard builds are stateful 42
Visual inspection is misleading 42
Our working memory is fragile under repetition 42
8.3 What exists before wiring begins 42
8.4 Twowiringphases 43
Exploratorywiring 43
Referencewiring 43
8.5 Complete wiring definition 44
8.6 Why a wiring tableisused 44
8.7 Wiring states and controlled progress 44
8.8 Breadboard identification and orientation 45
8.9 Wiring tablereference 45
8.10 Wiringconvention 45
Generalrules 45
Anode and cathode reminder 46
8.11 ESP32to 10-LED bar array — signal wiring . . . 46
ESP32 Dev Board — Breadboard Left Side 46
ESP32 Dev Board — Breadboard Right Side . . . 46
8.12 10-LED bar array to GND — resistor wiring . . . 47
8.13 Push buttonwiring 47
Placementcheck 47
Wwiringsteps 48
8.14 ESP32 to GND — powerwiring 48
8.15 LCD backpackwiring 48
Signal breakout preparation 48
Signalwiring 48
Powerwiring 48
8.16 Decoupling capacitor installation 48

8.17 Completionstate 49

9 Bill of Materials (BoM)

9.1 ESP32 DevelopmentBoard (1x)
9.2 LCD 1602 withI2C Backpack (1x)

I2Cbackpack:
9.3 10-Segment LED Bar Graph Display (1x)
9.4 Resistor (10x)
9.5 Capacitor(1x)
9.6 PushButton (1x)
9.7 JumperWire (4x)
9.8 HookupWire
9.9 Solderless Breadboard 2x)
9.10 Optional mountingbase
9.11 LCDI2Caddressnote

10 Closing the Breadboard Build
10.1 Two Valid Builds, One Electrical System
10.2 Connection Integrity Is Part of the Design . . .
10.3 Mechanical Stability Progression
10.4 There Is No Single Correct Layout
10.5 End of the Physical Phase

11 Firmware Binaries
11.1 What These BinariesAre
11.2 Why They Exist
11.3 What TheyAreNot.
11.4 FlashingIs OutsidetheBook
11.5 Responsibility Boundary
11.6 Relationship to the SourceCode
11.7 Architecture Overview.
11.8 Firmware SourceTree

12 Firmware as an RF Observer
12.1 What the firmware is trying to prove
12.2 Observation versus participation
12.3 Local processing as a trust boundary

50
50
50
50
50
51
51
51
51
52
52
52
52

53
53
55
56
56
57

58
58
59
59
59
59
60
60
60

vi

12.4 Scanning is a snapshot, and the snapshot win-

dowmatters 65
12.5 Why 2.4 GHz exposes behaviour 66
12.6 Active scan choice and what itimplies 66
12.7 Firmware architecture that stays readable . . . 67
12.8 The Ulasastatemachine 68
Field screen as the homestate 69
Strongest screen and browse overlay 69
SUMscreen oo v oo 70
12.9 One button input and why polling beats inter-
ruptshere, 70
12.10 WiFi scan pipeline in the reference firmware . 70
Initialisation 71
Scan request and record capture 71
Strongest selection and the stability problem . . 71
12.11 The mathslayer and why it is explicitly heuristic 72
Summing power and why logarithms bite 72
LED bar mapping as perception, not measure-
ment. 73
12.12 LCDdriver reality and the backpacktrap . . . 73
12.13 Follow mode and identity in WiFi 74
12.14 Why Spectrum One can beat smartphone
apps at truth telling 75
Scan frequency throttling on Android 75
General-purpose WiFi scanning is restricted on
i0S. 76
Phones optimise for battery, privacy, and user
eXperience 76
12.15 Direct control of scan timing and processing . 76
Whenscanshappen 76
How resultsarestored 77
Whatisaggregated 78
Whatisrendered 78

12.16 Behaviour switches exposed in firmware . . . 78

12.17 What people commonly misread, and what
the firmware is showinginstead
Mistake 1: expecting stability
Mistake 2: treating RSSI as distance
Mistake 3: trusting single numbers too much . .
Mistake 4: thinking a scan is a list of everything

12.18 Practical experiments that expose behaviour
quickly
Experiment 1: vary the scan cadence
Experiment 2: enable strongest smoothing and

observe thetradeoff
Experiment 3: browse order versus identity
Experiment 4: change activity, not topology . . .
12.19 Limits that keep the projecthonest
12.20 This firmware doesone thing

13 Printed Circuit Board

13.1 From BreadboardtoPCB
13.2 PCB Design Philosophy
13.3 Socketed ESP32Module
13.4 LCD Mounting and Connector Choice
13.5 Component Spacing and Soldering Experience

13.6 Physical Layout and Assembly Cues
13.7 Reproducibility and Repair
13.8 Included Files and Manufacturing
13.9 Open Design Files and Ongoing Access
13.10 AssemblyNotes
13.11 Closing the Reference Build
13.12 Future Expansion and Design Continuity . . .

14 Final Distribution and Availability

14.1 ReferenceScope
14.2 PhysicalBuilds
14.3 Fully Assembled Reference Build

vii

79
79
80
80
80

81
81

81
82
82
82
82

84
84
84
85
86
86
86
87
88
88
89
89
89

viii

14.4 Unassembled Hardware Set DIYKit.
14.5 Firmware Status
14.6 DesigniIntent
14.7 AvailabilityNotes

15 Beyond Spectrum One
15.1 The Hardware Is the Instrument
15.2 Making the Invisible Legible
15.3 The LED Bar as a Visual Language
15.4 Other Directions the Platform Can Take
CountingandEvents
Time and Attention
Environmental Observation
Learning and Experimentation
Behavioural and Conceptual Systems
15.5 What Does NotChange
15.6 A Finished Instrument, NotaDead End
157 Closing e

16 Use of Al Tools

17 Figures

94
94
94
95
95
96
96
96
97
97
97
98
98

929

100

1 Introduction

Spectrum One is a small electronic device that observes Wi-
Fi activity in the 2.4 GHz band and presents it as a live visual
display.

The system is built around an ESP32, a ten-segment LED
bar, and a two-row character LCD. As wireless activity in the
surrounding environment changes, the display responds.
The goal is not to analyse packets or measure RF character-
istics, but to make otherwise invisible activity visible in a
simple, immediate way.

The project begins on a breadboard to make changes un-
complicated and fast during early development. At the start, I
had no clear plan for how the system should behave. Most de-
cisions were made through trial and error, experimentation,
and reading documentation from Espressif. The breadboard
made it easy to change wiring, replace parts, and undo mis-
takes without friction.

As the device became more stable, the limits of the bread-
board became obvious. The system worked, but it was me-
chanically awkward to handle, move, or use for any length of
time. Wires came loose, parts shifted, and the build was not
something that could reasonably be treated as finished.

At that point, the project moved beyond exploration. The
breadboard build became a working baseline, and the next
step was to translate that configuration into a PCB that would
hold everything in place as a single, stable unit. The PCB ver-
sion is not a redesign of the system. It preserves the same pin
assignments, logic, and firmware behaviour developed dur-
ing the breadboard phase.

This book documents the project as a complete build ref-

erence. It covers the breadboard implementation in detail,
including wiring, pin usage, firmware, and observed be-
haviour. A corresponding PCB version exists and is derived
directly from the same design.

Spectrum One is an observational device. It reacts to
changes in Wi-Fi activity and displays relative behaviour
over time. It is not intended for calibrated measurement,
regulatory testing, or RF analysis.

1.1 Why IBuilt It

I built Spectrum One out of curiosity.

[wanted to understand how strong the Wi-Fi signal from
my router actually was around my home. Not in theory, but
in practice. I was looking for two things: a place as free from
Wi-Fiinteraction as possible for rest, and a place with reliable
coverage for work.

Yes, I could have downloaded an app and been satisfied
with numbers on a screen. But I wanted something physical
on my desk. A standalone device that worked independently
of a mobile phone, without background processes, notifica-
tions, or distractions.

Building it myself mattered. Projects like this expand my
understanding and force me to learn things I would otherwise
ignore. So instead of installing another app, I built a device
and let the answers emerge from using it.

I also publish the source code, firmware binaries, schemat-
ics, and PCB Gerber files on my GitHub. They are open source
and free for anyone to use.

The project repository is available at:

github.com/currenari

https://github.com/currenari

1.2 Who This Project Is For

This project is for people who want to build and understand a
complete electronic system, not just assemble a module.

The device can be built, powered, modified, and reworked
using basic tools. During development, all connections re-
main accessible, and the behaviour of the system can be
understood directly from the hardware and firmware.

The focusis on seeing how a system behaves as a whole and
how that behaviour changes as the design evolves.

1.3 What This Book Covers

This book provides a complete build reference for the Spec-
trum One device.

It includes:

« Breadboard wiring layouts and ESP32 pin usage

+ A tested firmware build

« LED and LCD display behaviour

« Descriptions of how the device responds in use

« A bill of materials with part references

 The transition from a working breadboard build to a sta-

ble PCB version

The material is intended to support rebuilding, modifica-

tion, and further development.

2 Project Requirements

This project is documented around a specific, tested refer-
ence build.

The requirements listed in this chapter reflect the exact
hardware and software used during development and verifi-
cation of the reference implementation. All wiring diagrams,
pin assignments, build stages, and behaviour described in
this book refer to this configuration unless explicitly stated
otherwise.

Keeping a single, known baseline avoids ambiguity and
makes it easier to reason about behaviour when something
does not work as expected.

Where substitutions are practical or known to work, they
are discussed later. Builders are encouraged to understand
the implications of any changes they introduce.

2.1 Hardware

ESP32 Development Board

ESP32 Dev Kit V1 30-pin variant fitted with an ESP32-
WROOM-32 module

This development board is used throughout the reference
build. It provides predictable pin access, stable power regula-
tion, and a form factor that works reliably on a breadboard.

Other ESP32 boards may differ in pin mapping, physical
layout, antenna placement, or electrical behaviour. Those dif-
ferences matter in a project that relies on repeatable wiring
and consistent GPIO usage.

For clarity and consistency, this book assumes the ESP32
Dev Kit V1 unless stated otherwise.

Breadboards

a pair of half-size solderless breadboards, mounted side by
side

If half-size breadboards are not available, two full-size sol-
derless breadboards can be used instead. Both arrangements
provide enough space for the reference build and are function-
ally equivalent.

The detailed breadboard layout, mounting, and mechani-
cal considerations are covered in a dedicated chapter later in
this book.

LED Bar Array

10-segment LED bar reference part: HSN-2510SR

The LED bar must consist of ten electrically independent
LED segments. Each segment is driven individually through
its own current-limiting resistor.

As an alternative, ten individual LEDs may be used instead
of a bar module. In that case, resistor values must be chosen
to match the LEDs being used.

LCD Module

16x2 character LCD (LCD1602) 12C backpack based on the
PCF8574 1/0 expander

LCD1602 modules are visually similar but mechanically in-
consistent across manufacturers. Backpack layout, pin orien-
tation, board spacing, and backlight circuitry often vary.

The reference build uses a PCF8574-based 12C backpack
with a known address and predictable behaviour. Other
backpacks may work, but differences are common and may
require wiring or firmware changes.

Push Button

momentary tactile switch SPST, normally open 6 mm x 6 mm
footprint

The push button is used for basic mode changes and inter-
action. No special characteristics are required beyond reli-
able contact and mechanical durability.

Passive Components

10 x 220 ohm resistors, 0.25 W, 5 % used for LED current lim-
iting

1 x 100 nF ceramic capacitor (marked “104”) used for local
power supply decoupling for the LCD module

The resistor value is not critical, but 220 ohms provides a
good balance between brightness and GPIO current limits.

The capacitor helps stabilise the LCD supply and reduces
display artefacts.

Wiring Materials

Dupont jumper wires or single-core solid wire 22 AWG recom-
mended

The reference build uses 22 AWG single-core wire. This im-
proves mechanical stability, visual clarity, and fault tracing
during inspection and rework.

Standard jumper wires are often used during rapid proto-
typing for short periods. In this build, unstable jumper con-
tacts were a frequent cause of LCD artefacts and intermittent
behaviour.

2.2 Software

No proprietary software is required for this project.

The reference build uses standard, widely available tools
that run on common operating systems.

Development Environment

a computer running Linux, macOS, or Windows USB access to
the ESP32 development board

The reference build was developed using Linux, but all
tools used are cross-platform.

ESP32 Toolchain

Espressif ESP-IDF

ESP-IDF is used to build, flash, and debug the firmware.
The project uses ESP-IDF rather than the Arduino framework
to avoid additional abstraction layers and to provide direct
access to ESP32 features.

ESP-IDF is well integrated with Visual Studio Code through
Espressif’s official extension. This provides project configura-
tion, building, flashing, and serial monitoring within a single
environment.

The exact ESP-IDF version used for the reference build is
documented in the project repository.

Serial Monitor

Any serial terminal capable of 115200 baud communication
can be used.

During development, the integrated terminal in Visual Stu-
dio Code was used and proved stable and convenient. It is suf-
ficient for observing status messages and runtime behaviour.

Standalone terminal programs such as minicom, screen, or
picocom provide the same functionality if preferred.

Optional Tools

Tools used during development include:
« Visual Studio Code
« ESP-IDF tooling
« KiCad for schematic and PCB design

Alternatives may be used freely. The project does not de-
pend on any specific editor or CAD tool.

2.3 Notes on Component Sources

Well-documented components are available from established
electronics suppliers. Cheaper alternatives can often be
sourced elsewhere, but they usually arrive without documen-
tation and sometimes with inconsistent quality control.

In practice, low-cost versions of common modules almost
never include datasheets, and it is common to find no usable
documentation online at all.

3 The ESP32 Development Board Refer-
ence

Spectrum One is built around a breadboard-compatible
ESP32 development board based on the ESP32-WROOM-32
module.

Before assembling any hardware, it is worth understand-
ing what an ESP32 development board actually is, how boards
built around the same module can differ, and why this project
relies on a specific, well-defined variant. Many problems that
surface later in a build are often attributed to wiring mistakes
or firmware bugs. In practice, they usually originate much ear-
lier, from assumptions made at the board level. This chapter
surfaces those assumptions while they are still easy to correct.

3.1 What an ESP32 development board is

An ESP32 development board is not a single, fixed product.

It is a carrier board designed to make an ESP32 module
practical to power, program, and wire. The ESP32 itself is
contained inside a module such as the ESP32-WROOM-32.
That module integrates the microcontroller together with
flash memory, RF components, shielding, and an antenna
connection. It is intended to be soldered onto a larger board
rather than handled directly.

The development board exists to bridge that gap. The ESP
silicon has no native USB interface. The development board
provides it. It also handles voltage regulation, a reset and boot
interface, and a physical layout suitable for breadboards or
test fixtures. It makes decisions on the builder’s behalf, in-
cluding how the module is powered, how reset is generated,

10

how USB interacts with the chip, and which signals are ex-
posed on headers.

Two development boards can use the same ESP32-
WROOM-32 module and still produce different results. As-
suming equivalence at the board level is a common source of
subtle failure in ESP32 projects. The differences are rarely
obvious and usually surface only through timing, startup
order, or conditions that appear unrelated.

3.2 What “ESP32-WROOM-32"” refers to

The designation ESP32-WROOM-32 refers to a specific ESP32
module, not a development board.

Breaking the name down:

« ESP32 identifies the microcontroller family from Espres-
sif Systems.

« WROOM indicates a general-purpose, shielded RF mod-
ule intended for external integration.

- 32 identifies the module generation within the WROOM
family and implicitly fixes the internal silicon and feature
set.

In practical terms, ESP32-WROOM-32 means:

« Dual-core ESP32 SoC

- Integrated 2.4 GHz WiFi and Bluetooth

- External antenna connector or onboard PCB antenna, de-
pending on variant

« 4 MB flash in the standard configuration

The key point is that the module name defines what is in-

side the metal can, not how it is exposed to the user.

Other ESP32 modules exist that may look similar but be-

have differently, for example:

+ ESP32-WROOM-32E and ESP32-WROOM-32UE, which
use revised silicon and different antenna arrangements

« ESP32-WROVER modules, which add external PSRAM

11

« ESP32-S, C, and H series modules, which belong to differ-

ent ESP32 generations entirely

Development boards are built around these modules. Two
boards may both advertise “ESP32” while using different mod-
ules with different electrical, memory, and startup character-
istics.

That distinction matters later, when pin behaviour, boot
stability, and peripheral availability stop being interchange-
able.

The ESP32-WROOM-32 module defines what silicon is
present and how radio functionality is implemented. It does
not define how the device is powered, programmed, reset,
or physically accessed. Those characteristics are entirely
determined by the carrier board built around the module.

For this reason, identifying the module alone is not suffi-
cient to determine board compatibility. Two boards using
the same module may expose different GPIOs, apply different
pull-ups or pull-downs, use different regulators, or handle
reset and boot differently.

3.3 Why development boards differ

While the ESP32 chip inside the module may be identical, de-
velopment boards differ in how that chip is supported and ex-
posed.

Typical differences include header pin order, power
routing and regulation, reset and boot handling, additional
onboard components, and mechanical dimensions that affect
breadboard mounting. These differences are not always
documented clearly and are often revised silently between
board versions.

A board may appear stable when powered via USB but oper-
ate unpredictably once external wiring is added. Another may
flash firmware reliably yet fail to start consistently under load.

12

In many cases, the firmware is unchanged and the wiring ap-
pears correct.

The difference lies in the assumptions the board makes
about power delivery, reset timing, and pin state during
startup. No development board is neutral in this respect.
Each one encodes design choices that shape the ESP32’s
startup sequence before firmware execution begins.

Spectrum One is designed, built, and tested against a sin-
gle reference board so that these assumptions remain explicit
and consistent.

3.4 Implicit electrical contracts of development
boards

Every development board encodes a set of expectations about
how it will be used. These expectations are rarely stated, but
they matter.

A board may assume that power arrives via USB before any
external signals are present. It may assume that certain pins
remain floating or lightly loaded during reset. It may assume
short ground paths, low source impedance, or minimal noise
on control signals. When these assumptions are met, the
board operates predictably. When they are violated, stability
degrades without producing a clear failure mode.

These are not firmware assumptions. They are electrical
contracts between the board and its environment.

Breadboards, jumper wires, external modules, and sensors
often violate these contracts unintentionally. Long wires in-
troduce inductance. Shared ground rails introduce coupling.
External modules drive signals before the ESP32 is ready to
receive them. None of these conditions are unusual, but they
interact poorly with unstated board-level assumptions.

Recognising that these contracts exist changes how prob-
lems are diagnosed. Instead of asking why firmware appears

13

unreliable, the focus shifts to whether the board is being used
in a way its design implicitly assumes.

3.5 Reference board used in this project

This project uses the ESP32 Dev Kit V1 (30-pin) development
board.

All wiring diagrams, GPIO pin assignments, physical place-
ment rules, and described operation assume this exact board.
The results observed while building Spectrum One come from
this specific combination of ESP32 module, carrier board, and
power source.

Using such boards is possible, but it requires manual
adaptation, including reassessment of pin states before
startup and during reset, verification of power routing, and
confirmation of reliable reset and flashing under load.

Other boards are not prohibited. They are simply not
treated as drop-in replacements.

3.6 Why breadboards change ESP32 operation

Breadboards are convenient, but they are electrically impre-
cise.

Contacts introduce variable resistance. Ground rails are
shared across unrelated parts of the circuit. Long jumper
wires act as inductors and antennas. Adjacent rows couple
capacitively. These effects are often negligible for simple
microcontrollers, but the ESP32 operates at higher speeds
and tighter tolerances.

The ESP32 is particularly sensitive during startup. During
this phase, internal regulators stabilise, boot configuration
pins are sampled, and subsystems initialise in a fixed se-
quence. Electrical noise or unintended loading during this
window can alter outcomes without producing an obvious
fault.

14

This is why a circuit may operate correctly after a reset but
fail on a cold power-up. It is also why adding a single external
module can destabilise a previously working setup.

Spectrum One’s reference configuration is chosen to min-
imise these variables so that observed results reflect the sys-
tem itself rather than the construction environment.

3.7 Understanding pin roles

An ESP32 development board exposes many pins, but not all
of them serve the same role.

Some pins are intended for general-purpose input and out-
put. Others participate in boot configuration, flash access, or
internal subsystems that are active before firmware execution
begins. These distinctions are documented in datasheets and
schematics, but they are easy to overlook once the board is
mounted on a breadboard.

Pins that share similar positions on the header can serve
different roles internally. Choosing the wrong pin may appear
to work at first, but often fails during power-up, reset, or when
external hardware is added.

Typical symptoms include unreliable startup, unexpected
resets, inconsistent flashing, or systems that operate correctly
only after repeated resets. These effects are usually caused by
pin states during power-up rather than errors in the firmware
itself.

3.8 Pin state across reset

Each GPIO pin passes through three functional phases during
startup:

« Power-off and power ramp

« Reset and boot configuration

« Normal firmware-controlled operation

15

Most documentation focuses on the third phase. Many fail-
ures originate in the second.

During reset, certain GPIOs are sampled to determine the
boot mode. Others may be temporarily undriven or float
briefly before internal pull-ups or pull-downs become effec-
tive. External circuitry connected to these pins can influence
their state at precisely the wrong moment.

A pin that behaves perfectly as an output during normal op-
eration may prevent the system from starting if it is driven ex-
ternally during reset. This is why a design that works reliably
after a warm reset may fail intermittently or consistently after
a full power cycle.

3.9 Why pinouts look complex

ESP32 pinout diagrams appear complex because many inter-
nal functions share the same physical pins.

A single GPIO may support digital input or output,
analogue-to-digital conversion, touch sensing, or periph-
eral signalling depending on configuration. These functions
are multiplexed internally. Development boards expose the
physical pins directly, which is why the same pin may appear
under multiple labels in reference diagrams.

Pinout tables describe capability, not suitability. They show
what a pin can do, not whether it should be used in a given role.
Startup operation, internal pull-ups, and boot sensitivity are
often omitted or visually de-emphasised.

Input-only pins

Some ESP32 pins are input-only.

These pins can read signals but cannot drive loads. They
are suitable for sensors, buttons, and logic-level inputs, but
unsuitable for anything that requires current drive or stable
output signalling. Using an input-only pin as an output often

16

fails silently. The firmware may compile and flash correctly
while the connected hardware never responds.

Spectrum One avoids this class of error entirely. Input-only
pins are never used for outputs, and all LED bar connections
use GPIOs capable of stable digital output.

Boot-sensitive pins

Certain ESP32 GPIO pins influence startup operation.

If these pins are held high or low while power is applied, the
ESP32 may enter programming mode, fail to start normally,
or reset repeatedly. These decisions occur before firmware
execution begins.

Problems here are often misdiagnosed as firmware faults
because they occur inconsistently and disappear once the sys-
tem is running. In reality, they are caused by external wiring
altering pin states during power-up.

Spectrum One avoids boot-sensitive pins for external con-
nections. Startup operation remains consistent, resets occur
only when intended, and firmware flashing remains reliable.

The EN pin

The ESP32 Dev Kit V1 exposes an EN pin.

EN is the enable input for the ESP32. When EN is high, the
chip runs normally. When EN is pulled low, the chip is held
in reset. On this board, EN is connected to the onboard reset
button and associated circuitry that defines a clean reset do-
main.

Although EN appears on the pin header, it is not a general-
purpose signal. Noise, loading, or external connections on EN
affect the entire system rather than a single GPIO. Even minor
disturbances can result in spontaneous resets or failed star-
tups.

In Spectrum One, the EN pin is left untouched. Reset con-

17

trol remains under the control of the board’s onboard inter-
face and USB connection.

The VIN pin

The ESP32 Dev Kit V1 exposes a VIN pin intended for external
power input.

VIN feeds the board’s voltage regulation path, which sup-
plies the 3.3 V rail required by the ESP32. Stability depends
not only on voltage level but on how that voltage is delivered.
Current capability, wiring resistance, regulator headroom,
and thermal conditions all influence operation.

When powered via USB, the board receives a stable 5 V
supply that places the regulator within its intended operating
range. Startup timing is predictable and operation is stable.

When VIN is powered externally, especially at higher volt-
ages, thermal load increases and sensitivity to wiring quality
rises. The system may remain within nominal voltage limits
while still operating erratically under load.

Spectrum One powers the ESP32 Dev Kit V1 from USB with
5 V. The USB connection provides a 5 V rail that is present on
VIN and feeds the onboard voltage regulator. That regulator
supplies a stable 3.3 Vrail to the ESP32 silicon inside the mod-
ule.

3.10 Silkscreen labels and D-pin markings

ESP32 development boards commonly include silkscreen la-
bels printed along the pin headers. These labels are visual
aids, not specifications.

Labels beginning with the letter D are board-level aliases
chosen by the board designer. They are not GPIO numbers
and have no meaning to the ESP32 itself. A pin labelled “D5”
may correspond to GPIO 5 on one board and something else
on another.

18

From the ESP32’s perspective, only GPIO numbers exist.

For this reason, Spectrum One uses GPIO numbers exclu-
sively. All references are verified against the board pinout and
the project’s GPIO assignments. Silkscreen markings may as-
sist with orientation, but they are never treated as a source of
truth.

3.11 Pin selection and design discipline

The ESP32 provides many GPIO pins, but only a small subset
is required for this project.

Spectrum One uses only the pins needed to drive the LED
bar, read the push button, and communicate with the display.
All selected pins have predictable startup operation and stable
electrical characteristics.

This simplifies wiring, makes faults easier to isolate, and al-
lows the circuit to be understood without constant reference
to datasheets. Designs that are clear on a breadboard trans-
late more directly into clean schematics and predictable PCB
layouts.

3.12 Why two identical boards differ

Boards sold under the same name are not always electrically
identical.

Revisions change silently. Regulators are substituted. USB
interface chips are replaced. Pull-up values change. None of
these modifications are visible from the silkscreen.

As a result, advice that works for one board may fail on an-
other, even when both appear identical. This is a common
source of confusion in forums and tutorials.

Anchoring Spectrum One to a specific reference board
avoids this ambiguity. Observed results can be trusted as
repeatable rather than incidental.

19

3.13 The ESP32 ecosystem in context

The ESP32 appears frequently in hobby projects, but it
exists at industrial scale. Espressif Systems has shipped
well over one billion IoT chips worldwide. The ESP32 is
embedded in consumer products, industrial systems, moni-
toring equipment, and appliances that are never identified as
ESP32-based to the end user.

At this scale, variation is inevitable. There is no canonical
ESP32 development board. The term “development board”
describes convenience, not standardisation.

Spectrum One is designed with this reality in mind.

3.14 What this chapter is protecting you from

This chapter exists to prevent a specific class of failure.

It is not about learning every ESP32 feature. It is about
avoiding failures that feel mysterious, intermittent, or resis-
tant to debugging. By fixing assumptions early, later results
become explainable rather than frustrating.

3.15 Terminology used in this chapter

Pinout

The physical header map of a development board. It describes
which labels appear on which physical pin positions along the
board edges. Pinoutis a property of the board itself and is doc-
umented in Figure 1 for the ESP32 Dev Kit V1 reference board.

GPIO pin assignments

The project-specific mapping of GPIO numbers to functions.
It defines which GPIOs Spectrum One uses for the LED bar,
push button, and display interface. This mapping is reflected
consistently in wiring diagrams, firmware definitions, and ta-
bles, and is documented in Figure 2.

20

3.16 Reference figures and verification

Figure 1 shows the complete physical pinout of the ESP32 Dev
Kit V1 (30-pin) reference board. Its purpose is orientation. It
establishes the fixed relationship between the ESP32 module,
the carrier board, and the exposed header pins.

Figure 2 shows the GPIO pin assignments used by Spec-
trum One on the same board. The highlighted pins indicate
which GPIOs are actively used by the project and which are
intentionally avoided. These selections ensure predictable
startup behaviour and reliable interaction with external
hardware.

The two figures do not represent different boards or alter-
native configurations. They describe the same hardware from
different perspectives. Figure 1 answers what the board ex-
poses. Figure 2 answers what the project uses.

If a different ESP32 development board is used, the phys-
ical pin order, available GPIOs, and startup characteristics
must be re-evaluated against these roles. In that case, the
reference assumptions described in this chapter no longer
apply directly.

3.17 Real-world examples of board-level differ-
ences causing failure

The consequences of treating ESP32 development boards as
interchangeable are not theoretical. They appear repeatedly
in commercial products, field deployments, and large commu-
nity projects.

What follows are representative examples where outcomes
initially blamed on firmware were later traced to board-level
differences, power assumptions, or undocumented hardware
variation.

21

Product failures caused by ESP32 board and variant as-
sumptions

In commercial product development, ESP32 failures are fre-
quently caused by incorrect assumptions about the hardware
platform rather than by code defects. Industry post-mortems
document cases where products reached late development or
early production before hardware limitations became visible.

Common failure modes include incorrect power budget-
ing, unsuitable voltage regulation, misjudged flash memory
size, and peripheral availability that differed subtly between
ESP32 variants or board revisions. In several cases, products
required redesign after PCB fabrication because the selected
ESP32 board or module did not operate as expected under
real load.

These failures were not caused by misuse of the ESP32 it-
self. They resulted from treating a development board as a
neutral abstraction rather than as a specific electrical design
with constraints.

Field devices rendered inoperable by board-dependent
boot operation

ESP32 devices deployed in the field have been reported
to become permanently unresponsive following power cy-
cles or firmware updates, despite working reliably during
development and testing.

In documented cases, affected devices could not be re-
covered through reset or reflashing. Investigation pointed
toward boot-time conditions influenced by board-level fac-
tors such as power ramp characteristics, reset timing, or
pin states during startup. The same firmware continued to
operate normally on development units in the lab.

This class of failure is particularly dangerous because it
does not present as a firmware crash. The device appears

22

electrically alive but fails before user code executes. In pro-
duction environments, this results in bricked units rather
than debuggable faults.

Instability reported across “identical” ESP32 boards

Large user communities consistently report ESP32 systems
that reset, disconnect from WiFi, or operate erratically on
some boards but not others, even when running identical
firmware.

Patterns emerge in these reports. Problems correlate with
certain board manufacturers, regulator designs, USB inter-
faces, or power input methods. Switching to a different ESP32
board often resolves the issue without any code changes.

These cases are often dismissed as poor power supplies or
faulty units. In reality, they demonstrate that development
boards sold under the same name are not electrically equiva-
lent. Differences in component choice, layout, or revision his-
tory directly affect operation.

Evidence from broader IoT failure analysis

Academic analysis of IoT system failures shows that hardware
integration issues are a dominant source of bugs in deployed
devices. These include power integrity problems, undoc-
umented interactions between components, and incorrect
assumptions about platform behaviour.

The ESP32 is not unique in this respect. However, its high
integration level, RF subsystems, and boot-time complexity
amplify the impact of small hardware differences. Systems
that appear robust in controlled environments can fail when
exposed to real-world power and wiring conditions.

3.18 Why these examples matter for Spectrum One

Each example shares a common pattern:

23

« Firmware was initially suspected

+ Results were inconsistent or environment-dependent

« The root cause lay in board-level assumptions

These failures are not edge cases. They are the natural out-
come of treating development boards as interchangeable ab-
stractions rather than as concrete electrical designs.

Spectrum One avoids this class of problem by fixing the ref-
erence board, power source, and pin usage from the outset.
This does not eliminate complexity, but it makes results ob-
servable, repeatable, and diagnosable.

This ensures that when results change, the cause is identi-
fiable rather than mysterious.

3.19 References

1. Espressif Systems Community Forum esp32.com (ESP32
boot behaviour, brownout and startup issues)

2. Predictable Designs (2021) “ESP32 Design Mistakes That
Kill Your Product” predictabledesigns.com

3. A. M. B. et al. (2021) “An Empirical Study of Bugs in IoT
Systems” dl.acm.org

24

4 When the ESP32 Only Knows Itself

This chapter is about a boundary that is easy to miss.

After learning how development boards, modules, pinouts,
and GPIO assignments work, it is tempting to assume that any-
thing unclear can be resolved through software, inspection, or
experimentation. Many ESP32 problems persist because of
this assumption.

The ESP32 does not see the system the way a human does.

It has no awareness of the board it is mounted on, no knowl-
edge of silkscreen labels, and no understanding of how its
signals are routed once they leave the silicon. Understanding
where this knowledge ends changes how pin-related prob-
lems are interpreted and prevents entire classes of failure
before they occur.

4.1 The ESP32 only knows itself

Internally, the ESP32 identifies digital signals using GPIO
numbers only. These GPIO numbers are fixed in the silicon.
They do not change. They are the only pin-related identifiers
the chip understands.

What the ESP32 does not know:

« which development board it is mounted on

« how GPIOs are routed to headers or connectors

« what text is printed next to those pins

« how a manufacturer chose to group or name them

- which pins are convenient, awkward, or dangerous to use

From the ESP32’s perspective, the development board does
not exist as a concept.

There is no internal model of headers, pin order, silkscreen,

25

USB connectors, or board layout. There is only silicon, inter-
nal routing, and numbered signals.

This single fact explains most ESP32 pin confusion encoun-
tered in practice.

4.2 Pins are not GPIOs

On the ESP32, as on all modern microcontrollers, pins and
GPIOs are not the same thing.

A pin is a physical connection point. It is a bonded pad on
the package that allows electrical signals to enter or leave the
chip.

A GPIO is an internal digital signal controlled by the micro-
controller. It exists entirely inside the silicon and is config-
ured by software.

The connection between the two is intentional, not auto-
matic.

Inside the ESP32 is an internal routing structure that con-
nects GPIO signals to physical pins and to internal peripherals.
From the chip’s point of view, GPIOs are abstract resources.
Pins are merely places those resources may appear.

This distinction is often blurred in documentation, which is
why pins and GPIOs are frequently treated as interchangeable.
Electrically and behaviourally, they are not.

A useful way to think about it is this:

GPIOs are what the ESP32 controls

pins are where those signals emerge

Some GPIOs are input-only.

« Some pins are shared with internal functions.
Some pins behave differently during startup.
Some GPIOs cannot be freely used at all times.

This is why a pin that looks reasonable on a diagram may
fail silently or behave unpredictably in practice.

26

4.3 Why this feels counter-intuitive

From a human point of view, the development board is the de-
vice. You hold it, wire it, and read the labels printed next to the
pins. It is natural to assume the chip shares this understand-
ing.

It does not.

The ESP32 cannot tell whether a GPIO is connected to an
LED, a sensor, nothing at all, or several things at once. Once a
signal leaves the silicon, it disappears from the chip’s aware-
ness.

Accepting this mismatch between human perception and
chip reality removes a great deal of confusion.

4.4 Silkscreen labels are not authoritative

Silkscreen labels are added by board designers to help hu-
mans assemble hardware. They are not part of the ESP32
specification and are invisible to the chip.

Labels vary for many reasons:

« limited PCB space

« legacy naming conventions

« attempts to resemble other platforms

« aesthetic or marketing decisions

None of these choices affect ESP32 behaviour.

Two boards using the same ESP32 module may label pins
differently while remaining electrically equivalent. Con-
versely, two boards with similar-looking labels may behave
very differently.

Silkscreen is a convenience layer. It is never authoritative.

4.5 The translation step that always matters

Every ESP32 project requires an explicit translation step:
Human-facing label - GPIO number

27

That translation must happen before wiring hardware or
writing firmware.

Firmware operates exclusively on GPIO numbers. The
ESP32 never sees the labels printed on the board. Skipping
this translation produces systems that appear correctly wired
but behave inconsistently or only under specific conditions.

Once this step becomes habitual, most pin-related prob-
lems disappear.

4.6 What the development board actually defines

Pin mapping is a property of the development board, not the
ESP32.

The board designer decides:
which ESP32 pins are routed to headers

« which pins are omitted entirely

- which pins are shared with onboard components

« how pins are grouped and labelled

There is no universal ESP32 board-level pin layout.

Even boards sold under the same name may change sub-
tly between revisions. Header order, shared connections, or
available pins can shift without notice.

This is why pin identification is always a documentation

task. It cannot be solved purely through inspection or soft-
ware.

4.7 What software cannot tell you

The ESP32 has no mechanism to report how its GPIOs are
routed once they leave the silicon.

There is no register, API, or diagnostic interface that ex-
poses board-level routing. Firmware can configure GPIO
behaviour, but it cannot discover where those signals go.

28

This is not a tooling limitation. It is a structural boundary
by design.

Software cannot tell you:

« which header pin corresponds to a GPIO

« whether a GPIO is shared with onboard hardware

« whether a pin is safe during startup

Those questions belong outside the chip.

4.8 The GPIO matrix and the illusion of rerouting

The ESP32 includes an internal GPIO matrix.

This allows many internal peripheral signals such as UART,
SPI, 12C, and PWM to be connected to different GPIO numbers
than their default ones. From software, this can look like
“remapping pins”.

What is actually happening is more subtle.

Inside the silicon, an internal signal is being connected to a
different GPIO number. The physical pin associated with that
GPIO does not change.

In other words:

« software can change which GPIO carries a signal

- software cannot change where that GPIO exists physically

No firmware setting can alter which package pin a GPIO is
bonded to, which header it appears on, or how the develop-
ment board routes it.

Software cannot reroute copper.

This distinction explains why remapped peripherals still
fail when the chosen GPIO is not exposed on the board, is
input-only, or is boot-sensitive. The internal routing suc-
ceeded. The physical constraints did not.

4.9 What software can do instead

Software can confirm assumptions, not discover facts.

29

Typical confirmation methods include:
« toggling a GPIO and observing which header pin changes
state
- enabling internal pull-ups and measuring voltage exter-
nally
« configuring known input-only GPIOs and observing out-
put failure
These techniques work because electrical behaviour is ob-
servable.
They are useful when documentation is incomplete, but
they are slow and risky when boot-sensitive pins are involved.

Example: confirming a GPIO mapping

Connect an LED with a resistor to the header pin you believe
corresponds to GPIO18.

const int testPin = 18;

void setup() {
pinMode (testPin, OUTPUT);
£

void loop() 1%
digitalWrite(testPin, HIGH);
delay (500);
digitalWrite(testPin, LOW);
delay (500);

%

If the LED blinks, the mapping is confirmed.
If it does not, the assumption was wrong.

A silent failure

Some ESP32 GPIOs are input-only.

Using such a GPIO as an output produces no error. The code
compiles. The firmware runs. The hardware does nothing.

30

Without a correct mental model, it is easy to blame wiring
or firmware when the cause is neither.

Boot-sensitive pins and early failure

Some GPIOs influence how the ESP32 starts.

Their state during power-up determines whether the chip
boots normally, enters programming mode, or fails to start.

Failures caused by these pins occur before firmware execu-
tion begins. Debugging them in code is futile.

Correct pin identification prevents this entire class of prob-
lems.

The RF shield and misleading clues

The metal enclosure on the ESP32 module is an RF shield.

It is electrically grounded and part of RF and EMC compli-
ance. Markings on the shield vary and do not describe pin be-
haviour or routing.

Removing the shield provides no useful insight and risks
permanent damage. It is not a diagnostic tool.

4,10 Coreinsight

Pin identification is not a software problem. It is not a
firmware problem. It is a development-board problem.

Once this boundary is understood, ESP32 operation be-
comes predictable rather than frustrating. Problems stop
feeling random because their causes are no longer invisible.

4.11 Reference figure 3

Figure 3 illustrates two ESP32 development boards populated
with ESP32-WROOM-32 modules. Differences in silkscreen,
shield markings, and board layout do not imply differences in
GPIO behaviour.

31

5 Breadboard layout and mechanical
preparation

Wide range of development boards expose a practical limita-
tion of standard solderless breadboards.

Boards such as the ESP32 Dev Kit V1 occupy nearly the full
width of a breadboard. When inserted in the usual way, the de-
velopment board covers nearly all available tie points on the
breadboard, leaving little or no access for wiring. This limi-
tation is mechanical rather than electrical. It arises from the
fixed geometry of the breadboard and the width of the devel-
opment board, not from any characteristic of the ESP32 itself.

The approach documented here alters the breadboard lay-
out to remove this limitation. It applies equally to half-size
and full-size solderless breadboards.

The goal is simple: reposition the breadboard terminal
strips so the existing tie points beside each pin row are no
longer obstructed by the development board body.

5.1 Physical layout and spacing

Figure 4 shows the physical arrangement used to achieve this.

Two solderless breadboards are mounted side by side on a
flat mounting surface. One power rail is removed from each
breadboard so that the inner edges face an open space, form-
ing a central clearance gap between the two terminal strip ar-
eas.

The clearance gap does not define pin spacing and is not
tied to a specific dimension. The ESP32 Dev Kit V1 has a
pin-row spacing of 22.86 mm, but the breadboards are po-
sitioned closer together than this value. The development

32

board bridges the gap while inserting cleanly into the tie
points on each side.

Keeping the gap narrower than the ESP32 pin spacing is
intentional. It allows the same modified base to be reused
with development boards that differ in width or pin arrange-
ment. The Raspberry Pi Pico 2 shown later in Figure 5I is in-
cluded only as an example of this reuse with other develop-
ment boards.

This layout restores full access to tie points on both sides of
the development board while keeping the board mechanically
relaxed and free from lateral stress.

Figure 4 describes the resulting layout concept. The follow-
ing chapter documents the physical modification steps used
to create it.

33

6 Breadboard modification sequence

This solution exists because buying adapters became a dead
end.

Every development board seems to require a different
carrier, breakout, or mounting adapter. Over time this turns
into a drawer full of expensive, single purpose parts that only
solve one mechanical problem and create another. Switch-
ing boards means ordering more hardware, waiting, and
rebuilding the same setup again.

This modification came out of frustration with that cycle.
Instead of adapting the breadboard to a specific board, the
breadboard is stripped back to the minimum needed and
the development board itself defines the spacing. Removing
only the inner power rails creates enough clearance for a
wide range of boards without locking the layout to any single
footprint.

The result is a base that works across projects, boards, and
revisions without additional adapters or accessories.

Figure 5 documents the physical modification sequence
and resulting layout.

« 5A Two solderless breadboards before modification

« 5B Inner power rails identified for removal

« 5C Breadboard inverted on a flat cutting surface

« 5D Power rail separated by cutting through the self-

adhesive layer

« 5E Power rails removed from both breadboards

« 5F Development board placed across the gap for a soft

alignment check (side view)

« 5G ESP32 Dev Kit mounted across the clearance gap (top

view)

34

« 5H Close-up showing restored access to tie points beside
the mounted board
« 5I Alternative development board mounted on the same
base as an example of reuse
One power rail is removed from each breadboard to create
the clearance gap. No further modification is required. The
base can be reused indefinitely.

6.1 Mounting and alignment

After modification, the breadboards are placed on a flat
mounting surface such as aluminium dibond, plastic sheet,
or any rigid, dimensionally stable material. At this stage, they
are positioned but not fixed.

6.2 Alignment check

Figure 5F shows a development board placed across the clear-
ance gap while the breadboards remain movable. This step is
used to verify alignment before committing to adhesive fixing.

The development board is inserted to confirm that both
pin rows enter the terminal strips cleanly and without lateral
force. Any resistance at this stage indicates misalignment,
which leads to unreliable electrical contact and long-term
mechanical stress.

Figure 5G shows the ESP32 Dev Kit mounted after correct
alignment has been achieved.

Once alignment is confirmed, the breadboards are fixed in
place using their self-adhesive backing.

Figure 5H shows a close-up view of the mounted board, il-
lustrating unrestricted access to tie points on both sides.

35

6.3 Multi-board compatibility

The modified breadboard base is not tied to a single develop-
ment board.

Figure 51 shows a different development board mounted
on the same base without further modification. This confirms
that the mechanical layout supports boards with different
widths and pin arrangements, provided their pin rows align
with standard terminal strips.

36

7 Breadboard component placement

This chapter documents the physical component placement
used in the Spectrum One reference build.

The placement reflects deliberate decisions made during
the build. Nothing here is presented as a rule or requirement.
The purpose of this chapter is to explain why components
were placed where they are, not to prescribe a layout that
must be copied.

Figure 6 shows the physical component placement used in
the Spectrum One reference build, drawn to match the actual
breadboard layout.

7.1 Placement as design thinking

Component placement on a breadboard is often treated as ar-
bitrary. In this build, it is used as an early design exercise.

Each placement decision considers mechanical access,
electrical context, and the later transition to a PCB layout.
The layout is not optimised for appearance or symmetry. It is
optimised for understanding.

7.2 ESP32 development board placement

The ESP32 development board is mounted across the central
clearance gap of the modified breadboard base.

The board is mounted across the clearance gap between
the two breadboards. This keeps the board body out of the tie
point area and leaves the existing tie points beside each pin
row available for wiring.

The antenna end of the ESP32 faces away from the majority
of surrounding components and wiring. This follows Espres-

37

sif hardware design guidance, which recommends keeping
the antenna region clear of nearby metal, copper, and other
components.

On a solderless breadboard this condition cannot be fully
met, but orienting the antenna away from other components
reduces detuning and performance loss. The same antenna
intent is applied without compromise in the PCB version of
the project.

7.3 LED bar array placement

The 10 segment LED bar array is placed across the central
channel of the right hand breadboard.

The package exposes one pin row on each side. Each LED
segment has its own anode pin on one side of the package and
its own cathode pin on the opposite side. There is no internal
common connection.

Functionally, the LED bar array behaves as ten independent
LEDs packaged side by side in a single housing.

Placing the array across the central channel on the right
hand breadboard uses the breadboard geometry to physically
separate the anode and cathode pin rows.

Each cathode pin aligns directly with its corresponding
current limiting resistor through the breadboard’s internal
conductive strip. This direct alignment removes the need for
jumper wires between the LED bar and the GND power rail.

This placement reduces wiring complexity and makes the
electrical structure of the LED array immediately visible.

7.4 Resistor placement

Each LED segment uses its own current limiting resistor.
The resistors are placed directly adjacent to the LED bar ar-
ray so that each cathode pin lines up with its corresponding

38

resistor. This alignment is intentional and reflects deliberate
use of the breadboard’s internal design.

The resistors appear angled relative to the main terminal
grid because the power rails are segmented in groups of five
tie points and offset from the grid. This angle is dictated by
breadboard construction rather than assembly choice.

The placement is mechanically correct and avoids unnec-
essary lead deformation.

7.5 Push button placement

The tactile push button is placed on the left hand breadboard
in a position that allows comfortable finger access during op-
eration.
The switch is not placed across the central channel. For this
type of tactile switch, doing so provides no electrical benefit.
This placement avoids imposing constraints that are not re-
quired by the component itself.

Internal switch structure and operation

The tactile switch used in this build is a standard four pin, mo-
mentary, normally open device.

Internally, the two pins on one side of the package form a
permanently connected pair, and the two pins on the opposite
side form a second permanently connected pair. Pressing the
button bridges these two internal pin pairs.

Electrically, the switch behaves as a two terminal compo-
nent. The additional pins provide mechanical stability only.
Separating the pins across a breadboard channel does not im-
prove operation.

7.6 Capacitor placement

A single ceramic capacitor is placed in the LCD power path.

39

The capacitor provides local decoupling between VCC and
GND at the point where the display draws current. On a sol-
derless breadboard, long power paths and shared rails make
this especially relevant.

Placing the capacitor close to the LCD wiring reduces tran-
sient voltage drops caused by display switching activity.

No additional capacitor is used for the push button. The
button is debounced in software to handle mechanical con-
tact bounce, and an RC network is not required for reliable op-
eration in this build. This separation reflects an intentional
design choice rather than component grouping by proximity.
Mechanical bounce occurs on the millisecond scale and can
register as multiple transitions unless filtered.

7.7 Wiring length and intent

Some connections are kept short where the breadboard lay-
out allows it. Others are necessarily longer due to the physical
constraints of the breadboard format.

Power decoupling and display related paths benefit from
short loops, but on a solderless breadboard these cannot al-
ways be achieved. Other signal lines are tolerant of longer
routing and remain reliable in this context.

This layout reflects the limitations of the breadboard
rather than an attempt at full routing optimisation, which is
addressed later in the PCB design.

7.8 Interpretation of the reference layout

The placement shown is one valid solution. It is not the solu-
tion.

Components may be moved, reoriented, or replaced with-
out breaking the project, provided their electrical roles are re-
spected. The value of this chapter lies in understanding why
the placement works, not in copying it blindly.

40

This mindset becomes critical when transitioning from
breadboard builds to PCB design.

7.9 What this layout teaches before PCB design

This breadboard layout acts as an early design filter. It forces
decisions that matter later when the circuit becomes fixed.

Lessons that transfer directly to PCB work include:

« antenna placement matters early

« component proximity follows electrical context

« not all signals require equal optimisation

- mechanical access is part of design
breadboard geometry exposes hidden assumptions

» placement is reasoning, not decoration

Treating breadboard placement this way reduces rework
and shortens the transition from prototype to PCB.

41

8 Breadboard Wiring

This chapter documents how the Spectrum One breadboard
build is wired, step by step, from an empty base to a fully work-
ing reference system.

The wiring process described here is not about copying
shapes from photographs. It is about translating a schematic
into physical connections in a controlled and repeatable way,
while keeping track of progress and avoiding hidden errors.

Breadboard wiring is often treated as an informal activity.
In this project, it is treated as an engineering task.

8.1 What this chapter covers

This chapter explains how the schematic for Spectrum One is
translated into a physical breadboard build, and how wiring
is executed in a way that remains understandable, verifiable,
and repeatable over time.

It describes:

« why breadboard wiring fails without structure

« how wiring progresses through distinct phases

« how correctness is tracked during incomplete states

- why a wiring table is used instead of memory or visual

copying

8.2 Why breadboard wiring fails without structure

This chapter exists to address four structural problems that
occur when a schematic is translated into a physical bread-
board build.

42

Schematics collapse time

A schematic represents the final electrical state of a circuit. It
contains no information about the order in which connections
are made, removed, or temporarily absent during construc-
tion.

Breadboard builds are stateful

At any moment during wiring, the circuit exists in a partial
state. This state may be electrically incomplete, logically in-
consistent, or temporarily contradictory to the schematic.

Visual inspection is misleading

During intermediate states, a build can look wrong while be-
ing correct for that stage, or look correct while hiding missing
or duplicated connections.

Appearance does not map reliably to electrical truth.

Our working memory is fragile under repetition

Long wiring sessions overload short-term memory. This
leads to skipped steps, repeated connections, and uncer-
tainty about what has already been done, especially when
tasks are interrupted.

At no point during wiring does the breadboard know what
stage it is in. Only the builder does, and only if progress is
tracked explicitly.

8.3 What exists before wiring begins

Before the first wire is placed, several things already exist:
- a defined idea and functional goal
« selected components with known electrical behaviour
+ datasheets reviewed for pin functions and constraints
« a complete schematic developed in advance
« preparation for a wiring table derived from the schematic

43

At this point, nothing is yet physical. All decisions exist on
paper and in the schematic.

The schematic defines what must be connected. The bread-
board wiring is the execution of that definition.

8.4 Two wiring phases

Breadboard wiring in this project is split into two distinct
phases.

Exploratory wiring

An early physical build is usually fast and untidy.
At this stage:
+ any available breadboard may be used
« jumper wires are mixed lengths and colours
« clarity is secondary to basic function
The purpose here is verification and speed.
This phase is used to answer one question only:

Does the circuit behave as intended?

Connections are added, removed, and re-routed freely.
This build is temporary and not preserved.

Reference wiring

Once the intended behaviour is confirmed, the exploratory
wiring phase ends.

The temporary build is set aside, and the circuit is rebuilt
deliberately as the reference breadboard build.

From this point onward, wiring is no longer exploratory.
Correctness, traceability, and repeatability become the goal.

44

8.5 Complete wiring definition

With behaviour confirmed, the schematic becomes the au-
thoritative reference.

The schematic defines the full electrical system and re-
mains the reference for the rest of the build.

Figure 7 shows the complete schematic for the Spectrum
One reference build as developed in KiCad. This schematic
provides the wiring definition against which all breadboard
work is carried out.

The schematic is available at full resolution in the project
repository on the Currenari GitHub account.

8.6 Why a wiring table is used

Some readers are comfortable wiring directly from a
schematic. Others find it difficult to maintain order once
multiple connections overlap and the physical build no
longer resembles the abstract diagram.

To address this, the schematic is translated into a wiring
table.

The wiring table preserves schematic intent while impos-
ing sequence and physical reference points.

It replaces memory and visual copying with an explicit,
checkable process.

8.7 Wiring states and controlled progress

A schematic represents the final state of a circuit. A bread-
board build does not start in that state.

Instead, it moves through intermediate wiring states.

An intermediate wiring state:

+ is not complete

« is not expected to function

« may look incorrect if judged visually

45

This is normal.

Progress is measured against the wiring table, not against
photographs or memory.

Photographs serve only as contextual reference. They are
not a wiring source and not a wiring target.

8.8 Breadboard identification and orientation

Two breadboards are used throughout the build (see Figure
8):

« BBL — Breadboard Left

« BBR — Breadboard Right

These identifiers remove ambiguity when connections
span both boards.

Tie-point coordinates are always given relative to BBL or
BBR and correspond to the physical orientation shown in the
reference figures.

8.9 Wiring table reference

This section defines the wiring steps used to execute the build.
Each step represents one physical wiring action and must
be completed sequentially.
These steps are the primary source of truth during wiring.
At this stage, the current-limiting resistors for the LED bar
and the decoupling capacitor are not yet installed.
They are added later in their dedicated wiring sections.

8.10 Wiring convention

General rules

« All wires are inserted into breadboard tie-points.
 Tie-points adjacent to the ESP32 headers are electrically
connected to the ESP32 pins.

46

« These tie-points inherit the GPIO identity of the con-
nected ESP32 pin.

« GPIO numbers identify the signal carried by that connec-
tion.

- Each wiring step describes one wire placed between two
specific tie-points.

Ticking steps helps maintain continuity and reduces

errors.

Anode and cathode reminder

To help remember the difference between anode and cathode,
a simple mnemonic can be used.

A for Anode is the first letter of the alphabet and corre-
sponds to the positive side of a diode, like an A+ rating.

This applies to diodes in general. An LED is a type of diode.

8.11 ESP32to 10-LED bar array — signal wiring

The following steps connect the ESP32 GPIO pins to the LED
bar anodes.

ESP32 Dev Board — Breadboard Left Side

[]Step 1: BBL f6 (GPIO32) - BBR a30
[]Step 2: BBL {7 (GPIO33) -» BBR a29
[]Step 3: BBL f8 (GPIO25) - BBR a28
[] Step 4: BBL f9 (GP1026) -» BBR a27
[]Step 5: BBL f10 (GPIO27) — BBR a26

ESP32 Dev Board — Breadboard Right Side

[]1Step 6: BBRd7 (GPIO18) » BBR a25
[]1Step 7: BBR d6 (GPIO19) - BBR a24
[]Step 8: BBR d5 (GP1I021) - BBR a23
[]Step 9: BBR d2 (GP1022) -» BBR a22

47

[]Step 10: BBR d1 (GPIO23) -» BBR a2l

At this point, all LED bar anodes are wired to their corre-
sponding GPIO pins.

The LEDs will not yet light. Their cathodes are not con-
nected.

8.12 10-LED bar array to GND — resistor wiring

Each LED bar segment has two legs:
 an anode, already wired
 a cathode, which must be connected to GND through a re-
sistor
Each segment uses one 220 ohm resistor.
[]Step 11: BBRj30 —» GND rail
[]Step 12: BBR j29 = GND rail
[]Step 13: BBRj28 - GND rail
[]Step 14: BBR j27 - GND rail
[]Step 15: BBR j26 = GND rail
[]Step 16: BBR j25 - GND rail
[]Step 17: BBR j24 —» GND rail
[]Step 18: BBR j23 —» GND rail
[]Step 19: BBR j22 - GND rail
[]Step 20: BBR j21 - GND rail
Each resistor completes one LED current path.

8.13 Push button wiring

Placement check

Confirm that the push button legs are inserted into:
[] BBL a2
[]BBL a4
[]BBL d2
[]BBL d4

48

Wiring steps

[]Step 21: BBL e2 = BBL GND rail
[1Step 22: BBL e4 — BBL g13 (GP1013)
The button wiring is now complete.

8.14 ESP32to GND — power wiring

The ESP32 ground pins must be connected to the breadboard
ground rails.

[]Step 23: BBL f14 —» BBL GND rail
[]Step 24: BBR €14 - BBR GND rail
This ensures a common reference across both boards.

8.15 LCD backpack wiring

Signal breakout preparation

[]Step 25: BBR €9 (GP1I017) - BBR h9
[]Step 26: BBR €10 (GP1I016) -» BBR h10

Signal wiring

[]Step 27: LCD SCL - BBR j9
[]Step 28: LCD SDA -» BBR j10

Power wiring

[]Step 29: LCD VCC - BBR j2
[1Step 30: LCD GND - BBRj1

8.16 Decoupling capacitor installation

[]Step 31: Capacitorleg 1 - BBR il

[] Step 32: Capacitor leg 2 - BBR i2

The capacitor provides local decoupling for the LCD power
path.

49

8.17 Completion state

This completes the wiring stage of the build.

All wiring now matches the schematic and the physical
component layout shown in Figure 6.

If components have not yet been placed, do so now.

The fully wired reference breadboard represents the
authoritative physical implementation of Spectrum One.

It demonstrates:

« all pin assignments

« all signal paths

« all functional groupings

The PCB version preserves this design and removes vari-
ability introduced by breadboard construction.

50

9 Bill of Materials (BoM)

This chapter lists the physical components used in the Spec-
trum One reference breadboard build and its corresponding
PCB implementation.

The BoM reflects the exact hardware used during develop-
ment and validation. It is intended as a reference, not a cata-
logue of alternatives.

9.1 ESP32 Development Board (1x)

Type: ESP32 Dev Kit V1
Module: ESP32-WROOM
Form factor: 30-pin
USB interface: USB-C

9.2 LCD 1602 with I2C Backpack (1x)

« LCD module type: LCD 1602

« Controller: HD44780 compatible

+ Display format: 16 characters x 2 lines
» Native interface: parallel (HD44780)

12C backpack:

« Controller: PCF8574

Interface: 12C

Pinout: GND, VCC, SDA, SCL

Default address: 0x27

Address selection: configurable via A0, A1, A2 jumpers

9.3 10-Segment LED Bar Graph Display (1x)
 Part type: LED bar graph

51

Model: HSN-2510SR

+ Colour: red

Segment count: 10 discrete LEDs

Pin count: 20 pins (10 per side)

Electrical configuration: no common anode, no common
cathode

Each LED electrically independent

Package style: single inline bar graph

9.4 Resistor (10x)

Resistance: 220 ohm
Tolerance: 5 percent
Power rating: 0.25 W
« Type: through-hole axial

9.5 Capacitor (1x)

Capacitance: 100 nF

« Type: ceramic

Package: through-hole

Purpose: local supply decoupling

9.6 Push Button (1x)

« Type: momentary tactile switch
Configuration: SPST, normally open
Package: through-hole, 6 x 6 mm

9.7 Jumper Wire (4x)

Type: Dupont jumper wire

« Configuration: female to male

Pitch: 2.54 mm

Use: LCD I12C backpack to breadboard connection

52

9.8 Hookup Wire

Type: solid core copper wire

Gauge: approximately 22 AWG

Insulation: PVC

Use: general breadboard interconnections

9.9 Solderless Breadboard (2x)

Size: half size

Tie points: 400 points

Power rails: two 50-point rails per board
Contact pitch: 2.54 mm

« Use: prototyping platform

9.10 Optional mounting base

Material: rigid insulating sheet

Examples: acrylic, ABS, or similar

Approximate size: 100 x 85 mm

Note: non-conductive materials are preferred to avoid an-
tenna interaction

9.11 LCD I2C address note

The reference build uses an LCD1602 with a PCF8574 12C
backpack configured at address 0x27.

The firmware is written and validated for this address.

Some visually identical LCD backpacks use address 0x3F
instead. If the display remains blank, change LCD_ADDR in
1cd1602_v2.c from 0x27 to Ox3F and rebuild the firmware.

Further details are covered in the firmware section.

53

10 Closing the Breadboard Build

This chapter closes the physical breadboard phase of the Spec-
trum One project.

At this point, the circuit is complete, functional, and veri-
fied. The purpose of this chapter is not to repeat wiring steps
or restate the schematic, but to document what was learned
during physical construction and to define the boundary be-
tween hardware execution and firmware analysis.

Breadboards are temporary by design. They exist to sup-
port exploration, validation, and iteration. The value of this
phase lies not in visual neatness, but in understanding which
behaviours originate in the physical layer and which do not.

10.1 Two Valid Builds, One Electrical System

Figure 10 shows the first phase of rapid development.

This build prioritises speed over stability. Pre-made
jumper wires are used extensively, wire lengths vary, and
routing is opportunistic. The goal at this stage is immediate
feedback: confirming pin mappings, validating peripheral
behaviour, and observing system-level interactions as early
as possible.

This approach is intentional and effective. It allows design
mistakes to surface quickly and reduces the cost of change
while the system is still fluid.

However, this wiring style has clear physical limitations.

Most pre-made jumper wires are typically 24 AWG
stranded wire. The smaller gauge, combined with stranded
construction and longer unsupported length, makes these
jumpers mechanically flexible. When inserted into a bread-

54

board tie point, this flexibility allows slight movement at the
contact interface.

That movement can cause intermittent micro-disconnections
or brief resistance spikes, especially on signals that are sen-
sitive to timing or voltage stability. The wire may appear fully
inserted, yet the electrical contact is not consistently stable.

When this occurs on non-critical digital lines, the effect
may go unnoticed. When it occurs on power rails or I12C lines,
the consequences become visible.

A common symptom during rapid builds is LCD instability.

Characters may appear incomplete, incorrect symbols may
be rendered, or the display may show partially updated lines.
This behaviour is not caused by a faulty display module and
not by incorrect firmware logic.

The cause is connection instability.

Typical failure modes include:

« brief voltage drops on the LCD supply

- ground reference instability between the MCU and

display

« momentary contact instability on SDA or SCL causing in-

complete or missed transitions

« unstable pull-up paths affecting 12C rise times

- fast transient voltage spikes on signal lines exceeding

logic thresholds

« interrupted command sequences during display updates

[2C failures on breadboards are typically caused by bit-
level timing and edge errors rather than complete byte loss,
leading to corrupted commands, missed acknowledgements,
or unintended START and STOP conditions.

HD44780-compatible LCD controllers do not tolerate un-
stable power or incomplete transactions well. If a command
stream is disrupted or the supply dips during an update, the
controller may enter an undefined state. The display then

55

shows corrupted output until it is reinitialised or power-
cycled.

This behaviour is expected under marginal electrical con-
ditions. It is not a defect and does not indicate an error in the
schematic.

Figure 9 shows the same circuit rebuilt deliberately.

Solid-core wire is used throughout, primarily 22 AWG. The
larger gauge and rigid conductor maintain firm pressure in-
side the breadboard tie points. Connections are mechanically
more stable, routing is controlled, and supply paths are con-
sistent. The electrical design is unchanged. Only the physical
execution differs.

With stable connections, the LCD behaves correctly and re-
peatably.

Both builds implement the same schematic. Both are elec-
trically correct. Only one provides sufficient mechanical and
electrical margin to serve as a long-term reference.

The purpose of showing both builds is not comparison or
judgement. It is to make the transition between exploratory
construction and reference construction explicit.

10.2 Connection Integrity Is Part of the Design

Breadboard failures are often misattributed to firmware bugs
or component quality. In many cases, the underlying cause is
neither.

Connection integrity is a first-order concern in mixed-
signal and bus-based systems. I12C, in particular, depends on
clean edges, predictable pull-ups, and uninterrupted trans-
actions. Breadboards provide convenience, not guarantees.

A useful diagnostic rule applies here:

If a display recovers after a power cycle, the problem is al-
most always electrical, not logical.

56

Recognising this boundary prevents wasted debugging ef-
fort and reinforces correct fault isolation.

10.3 Mechanical Stability Progression

The stability of system connections can be progressively
improved through mechanical construction choices, ranked
from least to most stable:

1. Pre-made jumper wire connections on a breadboard
These are the least stable due to thin 24 AWG stranded
conductors, flexible insulation, and poor mechanical
retention in the tie points.

2. Solid-core wire on a breadboard Thicker 22 AWG solid-
core wire improves contact pressure and reduces move-
ment within the tie point, resulting in fewer intermittent
faults.

3. PCB design with board-mounted connectors A PCB pro-
vides fixed geometry and strain relief. Connectors such
as JST headers reduce mechanical stress on signal pins
and improve long-term reliability.

4. Directly soldered connections Permanent soldered joints
offer the highest mechanical and electrical stability and
eliminate contact variability entirely.

Each step reduces uncertainty by removing degrees of me-
chanical freedom from the system.

10.4 There Is No Single Correct Layout

Breadboards do not impose a single physical solution.

The same electrical connections can be routed in many
valid ways depending on component placement, wire length,
and personal workflow. Visual symmetry is irrelevant. Elec-
trical correctness and mechanical reliability are not.

57

The reference layout shown in the figures is one working
solution. It is not presented as optimal or canonical.

What makes it a reference is that:

- every connection is deliberate

« every wire has a defined role

« the build can be reproduced consistently

« the system behaves the same after rebuilds

These properties matter more than appearance.

10.5 End of the Physical Phase

With the reference breadboard complete, the physical phase
of Spectrum One is finished.

From this point onward:

 the schematic remains unchanged

 the wiring is treated as fixed

- observed behaviour is analysed at the firmware level

Any instability observed beyond this point should be in-
vestigated in software, configuration, or interpretation, not in
physical construction.

The breadboard build now serves as the authoritative phys-
ical reference from which the PCB version is derived.

What the PCB will change is not the design, but the cer-
tainty.

58

11 Firmware Binaries

11.1 What These Binaries Are

The firmware binaries are direct build outputs produced from
the same source code published with Spectrum One.

Each file represents a specific firmware state compiled
and tested on the reference hardware. These files are snap-
shots of working firmware captured at a defined moment in
the project. They target the ESP32 microcontroller and the
Spectrum One device itself.

They exist as firmware images rather than user-facing soft-
ware. They run on the device and have meaning only within
the physical and electrical context of Spectrum One.

Everything contained in these binaries already exists in
readable form in the source code. The binaries add nothing
on top of that. They are simply the compiled result of the
same logic.

The published binary package contains only the following:

The published binary package contains only the following:

spectrum_one_firmware_v0.1.0/
README . txt
spectrum_one_v0.1.0.bin
spectrum_one_v0.1.0.elf
spectrum_one_v0.1.0.map

« The .bin file is the flashable firmware image.

« The .elf file preserves symbols and build context.

« The .map file records the linker memory layout.

Together, these files provide a fixed reference point for a
known working firmware build.

59

11.2 Why They Exist

The binaries are provided for anyone who finds them useful.

Some people use them to compare against their own builds.
Some use them to confirm that hardware behaves as expected.
Some ignore them completely and work only from source.

All of these choices are valid.

The project does not require the binaries, depend on them,
or privilege them over the source. They are published artifacts
from a working build, nothing more.

11.3 What They Are Not

The binaries are not instructions.

They are not a simplified path. They are not a supported
shortcut. They are not tailored to any operating system, flash-
ing tool, or workflow.

No assumptions are made about how or whether they are
used.

11.4 Flashing Is Outside the Book

Flashing firmware is an external process.

It depends on the host system, the tools chosen, the connec-
tion method, power conditions, and timing. These variables
change constantly and differ from system to system.

This book does not attempt to standardise or explain that
process.

If you choose to flash a binary, you already know how you
intend to do it. If you do not, the source code path remains
available.

11.5 Responsibility Boundary

Firmware flashing always carries risk.

60

Once a binary leaves the repository, what happens next de-
pends entirely on the environment it is introduced into. That
environment is not knowable or controllable from here.

The project provides firmware source and build outputs.
What is done with them is a user decision.

11.6 Relationship to the Source Code

The binaries do not define Spectrum One.
The source code does.
Every behaviour, decision, and interaction in the firmware

exists first in the source. The binaries are only compiled ex-
pressions of that work.

The next chapters move into the firmware itself. That is
where the logic lives, where changes are made, and where un-
derstanding actually begins.

11.7 Architecture Overview

The firmware is intentionally simple.

There is:

« one main execution loop

+ one button handling task

« one WiFi scan engine

« a small, explicit Ul state machine

There are no interrupts driving logic. There are no hidden
background timers. There are no asynchronous side effects.

This simplicity is not naive. It is defensive.

Complex systems hide cause and effect. Spectrum One re-
fuses to do that.

11.8 Firmware Source Tree

The repository structure mirrors the firmware’s intent.

61

spectrum_one/

CMakelLists.txt

sdkconfig

main/
CMakelists.txt
spectrum_one.c
wifi_scan.c
wifi_scan.h
wifi _one_math.c
wifi_one_math.h
led bar.c
led_bar.h
lcdl1602.c
1lcd1602.h
config.h

There are no generic helpers. No utils directory. No ab-
straction layers added “just in case”.

62

12 Firmware as an RF Observer

Spectrum One is a hardware project, yet the firmware is the
part that turns it into an instrument.

Without firmware, the ESP32 sits there as silicon and
antenna. With firmware, it becomes a disciplined observer of
the 2.4 GHz environment. It scans, collects, reduces, maps,
and renders a human-readable account of radio behaviour
that is normally reshaped or obscured by operating system
policy layers and interface abstractions.

The firmware collects only broadcast WiFi scan metadata
returned during active scans: SSID, BSSID, RSSI, channel,
and security flags. This data exists transiently in RAM, is
processed locally for display, and is overwritten on the next
scan or lost on power-off. There is without payload capture,
without credentials, without logging, without storage, without
transmission, and without external processing.

The RF front end and baseband inside the ESP32 remain
vendor implementations. That boundary is fixed and un-
avoidable. Spectrum One makes no claim beyond it. What
the firmware controls is everything above that boundary:
scan timing, result handling, aggregation, interpretation, and
rendering.

Interpretation does exist in the firmware, and it is inten-
tional. It is explicit, documented, and inspectable. The maths
layer converts reported RSSIvalues into derived indicators so
they can be rendered meaningfully on a small display. These
transformations are heuristics, not measurements. They
claim no physical authority and no calibration. They exist to
expose trends, relationships, and change, not to assert truth.

This distinction matters when comparing Spectrum One

63

to smartphone applications. Phones and ESP32 devices both
rely on vendor radios. The difference is that smartphones
place an operating system policy layer above the radio. Scan
timing can be throttled or deferred, results may be cached or
filtered, background behaviour is constrained, and identifiers
may be suppressed. An application does not own the scan
loop, and it cannot fully observe or control the transformation
chain that shapes what it displays.

Spectrum One does. The firmware controls when scans oc-
cur, how results are handled in memory, how values are de-
rived, and how they are rendered. No external policy layer re-
shapes the output. All interpretation is visible in code and can
be modified, removed, or replaced by the observer.

This chapter explains what that firmware is doing, why it is
built that way, and why the output is intentionally unsettling.
It also explains why Spectrum One can reveal behaviours that
many smartphone tools cannot, even when those tools appear
more polished.

The goal is to expose the real behaviour of WiFi by observ-
ing it end-to-end, with all interpretation made explicit and in-
spectable.

12.1 What the firmware is trying to prove

Most WiFiexplanations start with theory and end with a speed
test. That path builds confidence first, then disappointment.

Spectrum One takes a different approach.

It starts by exposing instability and asks you to treat that
instability as the primary signal. The firmware is designed to
show:

« WiFi scans are snapshots, not a live feed

« RSSIis alocal report, not a distance ruler

« strongest is a temporary winner, not a fixed truth

- small timing changes produce large visible changes

64

« smoothing can be useful, and it can also hide the story the
device is showing
Under the hood, the firmware is a chain of choices. It is not
physics. It is not calibrated metrology. It is a set of repeatable
transformations that turn scan responses into a display and a
moving LED bar.
That chain matters.

12.2 Observation versus participation

Spectrum One observes the environment while staying out of
the role people associate with WiFi devices.

It does not authenticate to an access point, negotiate se-
curity, request an IP, or move user traffic. It runs in station
mode because that is the ESP32 scanning model, yet it be-
haves as an observer rather than a network participant. In
wifi_scan_init () the firmware sets WiFi mode to station
and starts WiFi, then scans in a loop.

That separation matters because participation changes the
system you are trying to observe. Once you join a network,
your device becomes part of the airtime competition. It trans-
mits, it retries, it adapts data rates, it sleeps and wakes, it in-
fluences roaming, and it makes the environment respond.

An observer still influences the environment a little,
because active scanning transmits probe requests. The
firmware accepts that reality instead of pretending it can
watch without touching. The important point is intent and
scope: the firmware stays away from user traffic and stays
away from the make-the-connection-work mindset.

12.3 Local processing as a trust boundary

Everything that matters happens on the ESP32.

65

Scan results arrive, the firmware computes a small set of
derived values, then it renders them on the LCD and LED bar.

The software operates without an export path, without
background services, without accounts, and without any
remote database. The behaviour remains visible, traceable,
and reproducible on the bench.

That boundary is practical. It also keeps feedback tight.
When you change a constant, you see the result immedi-
ately, on hardware, in the same room, under the same RF
conditions.

12.4 Scanning is a snapshot, and the snapshot win-
dow matters

A WiFi scan is an active discovery process. A station sends
probe requests and waits for responses, then moves to the
next channel and repeats. The result is a set of responses re-
ceived inside a timing window, not an authoritative catalogue
of everything that exists.

That timing window is where people get stuck.

Two scans taken seconds apart can produce different lists
and different RSSI winners, even when neither you nor the
router has moved. That behaviour is normal in RF. It also gets
amplified by:

- multipath reflections within the surrounding environ-

ment

« interference from other 2.4 GHz systems

« airtime contention and backoff

« AP response behaviour under load

+ scan dwell time choices per channel

« dynamic transmit power and rate adaptation

« client-side filtering, caching, and rate limiting

Multipath alone is enough to break the RSSI equals distance
myth. Small changes in path length can push the received sig-

66

nal into constructive or destructive interference at 2.4 GHz,
producing rapid apparent swings.

So the firmware treats each scan as an independent snap-
shot, then builds only the smallest amount of continuity on
top, and only where continuity supports a stable interface.

12.5 Why 2.4 GHz exposes behaviour

The 2.4 GHz band is crowded, reflective, and inherently
messy. Signals at this frequency attenuate less through com-
mon building materials than higher bands, allowing them to
travel further within typical homes and overlap more easily.
The band is shared by many unrelated wireless systems and
is densely populated with overlapping networks operating in
close proximity.

That behaviour makes it ideal for observation. It refuses to
behave like a controlled laboratory environment and instead
exposes interference, contention, and variability as normal
operating conditions.

Starting with a cleaner band would hide many of these ef-
fects behind better propagation and lower congestion. Spec-
trum One is designed to reveal the mess, because the mess is
where understanding starts.

12.6 Active scan choice and what it implies

The firmware uses active scans. In the ESP-IDF scan configu-
ration, the scan type is set to active and hidden networks are
included in the scan result list.

Active scanning means probe requests are transmitted and
APs respond with probe responses. That tends to discover
more networks than passive listening in a short scan, espe-
cially in environments where beacon capture across all chan-
nels would take too long.

It also means your scan is part of the environment.

67

That is not a flaw. It is an honest tradeoff. On a small
embedded device, active scanning provides repeatable be-
haviour and usable datasets. The firmware accepts the
resulting variability and exposes it directly rather than hiding
it.

12.7 Firmware architecture that stays readable

The reference firmware is intentionally small and direct. The
source tree reflects that: a main application file, a scan mod-
ule, a maths module, an LCD driver, and an LED bar driver.

This is a deliberate architectural statement.

The firmware is not trying to be clever. It is trying to be
inspectable. When cause and effect must stay visible, every
extra layer becomes a liability.

The core modules are:

» spectrum_one.c Application control, Ul state, scan loop,
and input handling.
wifi_scan.c and wifi_scan.h WiFi scan initiation,
result capture, strongest selection, and total power
estimate.

« wifi_one_math.c and wifi_one_math.h Conversions
and mappings from scan values to Ul level values.
1cd1602.cand 1cd1602.h Adriverforal1l6x2 HD44780-
compatible LCD connected through a PCF8574 12C back-
pack, matched to the reference build.

This layer deserves special attention. LCD backpacks
that appear identical externally often differ internally.
Address selection, backlight polarity, transistor inver-
sion, and pin mapping can vary between manufacturers.
Swapping to a visually identical LCD module can intro-
duce subtle incompatibilities that present as firmware
faults.

In the reference build, the driver reflects the specific

68

backpack wiring used. When a different backpack is
fitted, symptoms such as inverted backlight control,
incorrect addressing, or non-responsive displays can
occur until the driver assumptions are aligned with the
actual hardware.

« led_bar.c and led_bar.h Ten GPIO outputs driving a
ten-segment LED bar used as a visual trend indicator.
This module is intentionally hardware-only. It contains
no WiFi logic and performs no calculations. It accepts a
single integer level from O to 10 and reflects that level di-
rectly on the GPIO pins according to the reference wiring.
All interpretation happens upstream. LED levels are
produced by mapping functions in wifi_one_math.c,
which convert WiFi-derived values into banded display
levels. These mappings include both aggregate activity
estimates and individual access point RSSI mappings.
For example, individual access point signal strength is
mapped to LED levels using a bounded scale defined in
the maths layer. The LED bar therefore visualises inter-
preted behaviour rather than raw signal values.

12.8 The UI as a state machine

A menu-driven interface changes behaviour by moving
through a list. The same button press can mean different
things depending on where you are in the menu structure.

Spectrum One does not navigate a menu. It switches be-
tween a small number of fixed Ul states. Each state defines its
own valid inputs and outcomes. Screen changes occur only
when a specific event triggers a specific transition.

The firmware defines a small, fixed set of screen states and
well-defined transitions between them. In the reference code,
ui_mode represents primary screens such as Strongest, SUM,

69

and Field, with additional overlay states for browsing and fol-
low mode.

This approach prevents accidental behaviour. Every
screen change is the result of a specific input event. Every
timeout is the result of a deliberate logic path. Nothing
changes implicitly.

As a result, behaviour remains predictable. Cause and ef-
fect stay visible in the code, and changes to Ul logic remain
local and traceable.

Field screen as the home state

The Field screen acts as the default state. It presents a com-
puted field-level value and provides an immediate sense of
overall RF activity. The LCD formatting applies unit scaling
to keep the value readable across a wide range.

Returning to a consistent home state simplifies interaction.
From there, other views can be entered intentionally and ex-
ited cleanly, without leaving residual Ul state behind.

Strongest screen and browse overlay

The strongest screen answers a simple question: which
named network is strongest in the current scan.

Browse mode extends this by allowing you to step through
individual access point records and inspect RSSI values per
entry. For this reason, wifi_scan_result_t stores a fixed
maximum number of access point records per scan, keeping
memory use bounded and predictable.

Browse mode also supports an optional timeout, controlled
through compile-time options. This allows the interface to
either return automatically to the home state or remain in
browse mode until explicitly exited, depending on the chosen
configuration.

70

SUM screen

SUM tries to show how much WiFi power appears present as
a single number. In the reference firmware, the scan result
carries both total mwand total_dbm.

This screen has two consequences:

+ aggregation can be useful

+ aggregation can invite false confidence

A single number looks authoritative. The firmware treats it
as a compact indicator, not a claim of truth.

12.9 One button input and why polling beats inter-
rupts here

A single button forces clarity. It reduces the Ul to events: short
click, long press, and context.

The firmware implements button reading via a dedicated
FreeRTOS task that polls at a defined interval, tracks stable
state, applies debounce, and detects long press timing. The
constants make that explicit: polling period, debounce ticks,
and long press duration.

Polling is a design choice with consequences:

- timing is visible in the code

« behaviour is easier to reason about

- the button is aligned to human time, not edge noise

Interrupt-driven button logic looks elegant until contact
bounce turns one press into many. Polling with a stability
threshold makes intent the unit of input.

12.10 WiFiscan pipeline in the reference firmware

The scan pipeline has four stages:
1. initialise WiFi and system services
2. request a scan
3. read scan records

71

4. compute derived values and update the Ul

Initialisation

In wifi_scan_init() the firmware initialises NVS (Non-
Volatile Storage), network interfaces, event loop, creates the
station interface, initialises WiFi, sets station mode, starts,
and reads the station MAC.

That is deliberate. It reduces hidden setup steps and keeps
the scan loop free of one-time complexity.

Scan request and record capture

In wifi_scan_run() the firmware clears the output struct,
sets safe defaults, constructs the scan configuration, applies
scan time config, then starts a blocking scan. It then reads the
number of APs found, caps it to a maximum, and retrieves the
AP records into a buffer.

Two design points matter here:

« empty scans are treated as valid snapshots. That pre-
vents a false idea that scans are guaranteed to find
something.

« record countis capped. That prevents memory chaos and
keeps behaviour stable across environments.

Strongest selection and the stability problem

The strongest access point is selected from the current scan
list.

In the default model, the strongest AP is simply the record
with the highest RSSI in that scan snapshot. This selection
can change frequently when multiple APs report similar sig-
nal levels, resulting in visible flicker.

An optional alternative model is implemented in the
firmware. This model applies hysteresis and persistence by
maintaining a locked winner and requiring a challenger to

72

exceed it by a defined margin for a defined number of consec-
utive scans before a switch occurs. The logic is documented
in code comments and implemented using a challenger
counter and configurable thresholds.

The two approaches represent different tradeoffs. Raw
selection reacts immediately to changes but can fluctuate
rapidly. Smoothed selection reduces visible switching at
the cost of delayed response and reduced sensitivity to
short-term variation. The behaviour is selected at compile
time.

12.11 The maths layerand why itis explicitly heuris-
tic

The maths module exists because the LCD and LED bar need
values.

[t contains:

« conversions from dBm to mW

- atotal power style estimate

+ a derived field value expressed as nW/m?

« mappings from those values to a 0 to 10 LED bar level

The header comments matter. The firmware describes the
field conversion as a heuristic derived from scan RSSI and
states that it is without calibration.

That honesty is essential.

RSSIvalues are already a product of vendor decisions. They
represent received signal strength at the radio with device-
specific scaling. Turning that into a field-style value is inher-
ently interpretive. The firmware does it anyway because it
provides a stable visual language for trend and density.

Summing power and why logarithms bite

RSSI is expressed in dBm, a logarithmic unit. Summing dBm
values directly is meaningless. If you want a combined power-

73

like figure, you convert each dBm to mW, sum the mW values,
then convert back to dBm.

The firmware follows that style by tracking total_mw and
converting to total_dbm through log10.

This produces a number that reacts to both the count of re-
sponders and their reported strengths. It remains an estimate
because:

« RSSI includes noise and receiver variability

« AP responses are not guaranteed each scan

 scan timing changes which responses arrive

Thatiswhy the firmware treats it as a comparative indicator
rather than a claim of exposure.

LED bar mapping as perception, not measurement

A 10 segment LED bar is a human perception device. It is bet-
ter at showing motion than showing absolute truth.

The firmware maps values into bands, clamps them, and
drives the bar level. The mapping functions use min and max
ranges for normalisation and return banded levels.

This accomplishes three things:

+ quick situational awareness

- trend visibility

« a built-in refusal to pretend precision

The bar is a language. It is a compression of complex be-
haviour into something your peripheral vision can read.

12.12 LCD driver reality and the backpack trap

The LCD in the reference build is an HD44780 compatible
16x2 panel with a PCF8574 I2C backpack. The firmware
driver is written to match that wiring, including the bit
mapping of RS, RW, EN, and backlight control.

This is where many builds fail.

The controller standard is stable. The backpack implemen-

74

tations vary widely. Backlight polarity, transistor inversion,
address strapping, and pin mapping differ between suppliers.
The resulting symptoms often resemble firmware faults:
blank screens, block characters, random glyphs, or backlight
control that operates with inverted logic.

The key insight is that the backpackis an adapter layer with
inconsistent conventions. The firmware is correct for the ref-
erence backpack. If your backpack differs, the driver must be
adapted.

This is why the chapter treats LCD issues as supply chain
and assumptions, not as mysterious software bugs.

12.13 Follow mode and identity in WiFi

Follow mode tracks a selected network using an identifier that
does not change between scans.

A practical use case is locking onto a known network, such
as a home access point, and moving around a property while
observing how its reported signal strength and visibility
change across locations.

In the reference firmware, the selected SSID is stored in
follow_ssid and used to locate the corresponding access
point record in subsequent scans. If the SSID does not appear
in a given scan snapshot, that absence is reported explicitly
rather than being replaced by another network.

This is a deliberate design choice about identity.

An alternative approach would be to track a specific BSSID.
While more granular, BSSID identity can change in real de-
ployments due to multiple radios, extenders, roaming infras-
tructure, or modern privacy-related behaviour. As a result,
BSSID-based tracking can produce discontinuous or mislead-
ing identity shifts.

Follow mode therefore prioritises SSID-based identity,

75

favouring continuity and interpretability over strict per-radio
precision.

12.14 Why Spectrum One can beat smartphone
apps at truth telling

Smartphones are powerful devices with capable radios. That
does not mean their WiFi scan results are neutral or complete.
On a phone, WiFiscanning is mediated by the operating sys-
tem. Scan timing can be throttled or deferred. Results can be
filtered, cached, merged, or delayed. Background scanning
can be heavily constrained. Power management and privacy
rules can limit what identifiers are exposed to apps. What an
app receives is often a policy-shaped view of WiFi, not a direct
representation of what the radio could observe in real time.

As a result, a smartphone WiFi app often shows what the
operating system allows it to see at that moment, not the full
set of conditions present on the air.

Spectrum One operates differently. It controls the entire
chain on the device: when scans occur, how results are han-
dled in memory, how values are derived, and how they are ren-
dered. The display is driven by the scan that just completed,
without reliance on an external OS policy layer deciding scan
cadence, background behaviour, or the shape of the results.

Scan frequency throttling on Android

On Android, WiFi scanning through public APIs is throttled.
Foreground apps are limited in how frequently they can re-
quest scans, and background scanning is constrained even
further across all background apps. When an app cannot scan
at the cadence a user expects, the interface tends to drift to-
ward cached or stale results, partial updates, or smoothing
that hides gaps.

Spectrum One runs on a device built for one job. It scans

76

in a fixed loop with a fixed delay, so the snapshot cadence re-
mains consistent and fully under firmware control.

General-purpose WiFi scanning is restricted on i0OS

i0S does not provide open, general-purpose WiFi scanning to
third-party apps in the way many people expect. WiFi-related
APIs are gated and targeted at specific use cases. This limits
what typical App Store apps can access and how directly they
can present nearby network information.

This is why an iPhone app can disagree with Spectrum One
without either device being faulty. The app is operating under
a different set of rules and constraints.

Phones optimise for battery, privacy, and user experience

A phone is a general-purpose device designed to preserve bat-
tery life, protect privacy, and keep interaction smooth. WiFi
scanning is power hungry, and nearby network information
can be used forlocation inference. Platform policies therefore
constrain scanning behaviour and the information exposed to
apps.

Spectrum One makes a different set of tradeoffs. It is ded-
icated hardware built to observe and display WiFi behaviour,
with scanning cadence and result handling kept explicit and
local.

12.15 Direct control of scan timing and processing

Spectrum One owns the entire scan-to-display chain, and that
ownership is explicit in code.

When scans happen

Scanning is driven directly by the main loop in spec-
trum_one.c. Each iteration runs a blocking WiFi scan via
wifi_scan_run() and then delays by a fixed interval. There

77

is no scheduler above it, no background policy, and no adap-
tive throttling. Scan cadence is therefore predictable and
repeatable by design.

How results are stored

Scan results are stored in a bounded result structure that is al-
located at compile time. Each scan writes into a fixed-size ar-
ray with a defined upper limit on the number of access points
that can be recorded.

This design is deliberate. By fixing the maximum result
count in advance, memory usage remains constant and
observable. There is no heap allocation, no resizing, and
no hidden growth as the radio environment becomes more
congested.

When surrounding WiFi activity increases, the system does
not consume additional memory or change its allocation be-
haviour. Excess results are ignored once the limit is reached,
preserving predictable timing and stable operation.

The concrete implementation details for this behaviour can
be found in the firmware source:

« WIFI_SCAN_MAX_APS

Defined in wifi_scan.h. This constant sets the maximum
number of access points stored per scan.

« wifi_scan_result_t

Defined in wifi_scan.h. This structure holds the bounded
scan results.

« WiFi scan logic

Implemented in the WiFi scan module, where scan re-
sults are copied into the fixed array and excess entries
are discarded.

78

What is aggregated

All interpretation happens in the maths layer, implemented in
wifi_one_math.c. This includes:

« converting RSSI (dBm) to linear power (mW)

« summing total received power across all visible APs

« deriving a field-style density estimate in nW/m?

« mapping derived values into discrete 0-10 LED levels

These mappings are explicit, bounded, and documented in
code comments. The LED bar never sees raw RSSI. It visu-
alises interpreted values only.

What is rendered

Rendering is handled by hardware drivers that deliberately
contain no WiFi knowledge:
« 1cd1602.c moves characters toa 16x2 HD44780 display
« led_bar.c sets GPIO levels for a ten-segment LED bar
Both drivers accept already computed values. They do not
smooth, filter, or interpret data. If a value changes on screen,
it changed upstream.

12.16 Behaviour switches exposed in firmware

Several behavioural choices are surfaced directly in code as
compile-time options:
- strongest AP selection Inwifi_scan.c, the strongest AP
can be selected in two ways:

— raw strongest per scan (default)

— optional smoothed winner using hysteresis and
persistence (OPT_STRONGEST_SMOOTHED_WINNER,
SWITCH_MARGIN_DB, REQUIRED_WINS) The differ-
ence between flicker and stability is therefore explicit.
It is a single switch with visible consequences.

« scan dwell timing Active scan timing is selectable

79

(OPT_SCAN_TIME_ALT). The comments document how
different dwell values change observed behaviour and
can introduce or suppress extreme spikes.

« Ul timeout behaviour In spectrum_one.c, idle timeouts,
browse timeouts, and screen-specific timeouts are inde-
pendently controlled with compile-time flags. Timeout
behaviour is not implicit. It is spelled out and can be re-
moved or enforced deliberately.

By contrast, a smartphone app cannot reliably own these

stages:

« scan scheduling may be altered or deferred by the oper-
ating system

« results may be cached, merged, or filtered before the app
receives them

« background execution limits can create long gaps be-
tween fresh scans

- privacy and location policies can suppress identifiers en-
tirely

This is why Spectrum One can produce a more honest out-

put despite its small display.

Honesty comes from control of the chain, not from the size

of the UL

12.17 What people commonly misread, and what
the firmware is showing instead

Mistake 1: expecting stability

People expect that if they stand still, the strongest network
and RSSI should stay fixed.

The firmware contradicts that expectation because the en-
vironment is not static. Packets collide, responses arrive late,
reflections shift with tiny motion, and scan snapshots include
different responders.

80

Flicker is information.

If the strongest winner flips between two SSIDs at similar
RSSI, that often indicates a threshold boundary in a reflective
environment.

Mistake 2: treating RSSI as distance

RSSI is a report of received signal strength, not a tape mea-
sure. Multipath fading and interference can dominate, espe-
cially indoors at 2.4 GHz.

Spectrum One reinforces this by showing that the winner
can change without movement.

When you see that happen repeatedly, the distance as-
sumption stops feeling reliable.

Mistake 3: trusting single numbers too much

The SUM figure and the Field figure are useful, yet they are
compressions.

The firmware is clear that the field-style value is heuristic
rather than calibrated measurement.

So the correct use is comparison:

« compare the same room at different times

- compare different rooms in the same building

« compare with and without specific devices running

- compare before and after channel changes on a router

The output is a lens for relative change.

Mistake 4: thinking a scan is a list of everything

A scan is an interaction. It depends on timing and responses.
Probe request and response behaviour is part of the process,
and each scan includes only what answered in that window.
Spectrum One treats empty scans as valid and treats chang-
ing lists as normal.
Discovery is probabilistic.

81

12.18 Practical experiments that expose behaviour
quickly

These are firmware-supported experiments that reliably
reveal how WiFi behaviour changes under controlled condi-
tions.

Experiment 1: vary the scan cadence

Change the scan delay in the main loop and observe:

« how strongest-AP stability changes

« how the number of APs reported per scan changes

« how SUM and Field values respond at different cadences

This demonstrates that scan timing directly influences
what appears visible. The environment does not change, but
the snapshot you take of it does.

Experiment 2: enable strongest smoothing and observe
the tradeoff

Enable the strongest smoothing option and compare it with
raw strongest selection.

The smoothed model requires a challenger to exceed the
current winner by a defined margin for a defined number of
consecutive scans before a switch occurs.

Observe:
the strongest label remains stable for longer
genuine changes take longer to appear

« the device output appears calmer

 the RF environment itself remains unchanged

This makes the cost of smoothing explicit. Stability is
achieved by delaying or suppressing change, not by improv-
ing accuracy.

82

Experiment 3: browse order versus identity

Use browse mode to step through access point records and
observe how record order changes between scans. Then lock
onto an SSID using follow mode and observe its behaviour
across snapshots.

This exposes the difference between list position and iden-
tity. Scan result order is transient. Identity must be resolved
explicitly rather than inferred from index position.

Experiment 4: change activity, not topology

Turn off a high-traffic device, such as a streaming client, and
observe SUM and Field behaviour.

In many cases, the list of visible access points changes lit-
tle, while aggregate values shift noticeably. This separates the
idea of what exists in the environment from what is actively
contributing to RF activity.

12.19 Limits that keep the project honest

Spectrum One is effective because its limits are explicit.

« it is without calibration

« it is without exposure measurement claims

« it is without health inference claims

« it is intended for comparative observation within a local

environment

These constraints prevent false authority. The firmware re-
flects this by treating all derived values as heuristics and by
keeping every transformation step visible in code.

12.20 This firmware does one thing

It runs WiFi scans, accepts whatever responses arrive in that
window, applies explicit transformations defined in code, and
displays the result. Nothing is stabilised for comfort. Nothing

83

is smoothed unless you enable it. Nothing is hidden behind
policy or background behaviour.

Every value shown is the direct outcome of:

 the RF environment at that moment

« the scan timing chosen

- the transformations applied in the firmware

If the output changes, something in that chain changed.

The firmware does not claim correctness, calibration, or
completeness. It exposes process. It makes the transfor-
mation from scan response to displayed value visible and
inspectable.

84

13 Printed Circuit Board

13.1 From Breadboard to PCB

The PCB version of Spectrum One is a direct continuation of
the reference breadboard build.

Nothing essential changes:

« Pin assignments remain the same

« System logic is unchanged

« Firmware behaviour and codebase are unchanged

This is not a redesign. It is the stabilisation of a proven ref-
erence build.

The breadboard establishes correctness and intent. The
PCB preserves that intent while removing the variability in-
herent in temporary wiring.

In practical terms, the PCB improves:

Mechanical stability

Build repeatability

Ease of assembly, inspection, and repair

Safe handling and transport

Confidence during through-hole soldering
Structural clarity through a simple two-layer layout

13.2 PCB Design Philosophy

The PCB is designed to prioritise learning, clarity, and
longevity.

Its goals are intentional and extensible:

 readable layout through clear spacing and grouping

- repairability without specialised tools

« reproducible fabrication using standard processes

85

+ safe modification without disturbing the core system

+ extension paths that allow future expansion without re-

design

There are no RF optimisation techniques, impedance-
controlled traces, buried layers, or density-driven compro-
mises.

One deliberate difference from the breadboard build is the
implementation of a copper-free keep-out zone beneath the
ESP32 antenna, following Espressif guidance. This constraint
is practical on a PCB and prevents avoidable detuning that
cannot be controlled on a breadboard.

The keep-out region is not an optimisation. It is a visible,
verifiable constraint that avoids introducing unnecessary RF
variables.

This board favours understanding over compactness. Rout-
ing and spacing decisions support visual inspection, manual
soldering, and confident modification rather than production
optimisation.

The PCB is intended to be understandable by inspection,
without requiring prior PCB design experience.

13.3 Socketed ESP32 Module

The ESP32 development board is mounted using sockets
rather than being soldered directly.

This allows:

» replacement of the ESP32 without rework

« recovery from damage without risking the PCB

« experimentation with alternative ESP32 modules

- removal without stressing pads or traces

Socketing trades compactness for long-term serviceability.
That trade is intentional.

The antenna region beneath the ESP32 module is kept free
of copper. No pours, traces, or components intrude into this

86

area. The constraint is visible in the layout and verifiable by
inspection.

13.4 LCD Mounting and Connector Choice

The LCD1602 module is connected using short wires termi-
nated with JST-XH connectors.

LCD1602 modules share a name but vary mechanically.
I2C backpacks differ in header placement, board thickness,
connector offset, and pin mapping between manufacturers.

Using short wired connectors provides:

« compatibility across LCD backpack variants

- stress-free mounting without forced alignment

« straightforward replacement of the LCD module

« mechanical isolation from PCB tolerances

This approach prioritises real-world variability over rigid
mechanical assumptions.

13.5 Component Spacing and Soldering Experience

All through-hole components are spaced generously.
This provides:
comfortable soldering access
clear visual inspection of joints
reduced risk of accidental bridging
straightforward rework and repair
The PCB is designed to feel approachable. It rewards care-
ful work rather than punishing inexperience.

13.6 Physical Layout and Assembly Cues

Figure 12 shows the populated PCB alongside the unpopu-
lated board, allowing direct comparison between component
placement and the underlying routing, silkscreen, and keep-
out zones.

87

Several design decisions become immediately apparent in
a way that schematics alone cannot convey.

The LCD occupies the dominant visual area of the board,
establishing it as the primary interface element. The ESP32
module is offset to preserve antenna clearance while main-
taining unobstructed access to the USB port. The LED bar
and its current-limiting resistors are grouped as a single
functional block, reinforcing their shared role.

The push button is positioned at the board edge for direct
access. This placement reduces accidental activation while
remaining easy to reach during use.

Assembly guidance is printed directly on the PCB. Silkscreen
arrows indicate correct orientation for both the LCD backpack
and the ESP32 module, reducing ambiguity during assembly
without requiring constant reference to documentation.

The copper keep-out zone beneath the ESP32 antenna
is clearly defined in the layout. The region remains free of
pours, traces, and components, making the constraint visible
and verifiable by inspection.

The unpopulated board view highlights routing simplicity.
Traces are widely spaced and easy to follow, with functional
areas clearly separated. No routing is hidden beneath dense
component clusters.

Taken together, the layout communicates how the board
should be assembled, used, and understood. The PCB does
not rely on implicit knowledge. Its structure is intended to be
readable in the same way the firmware is readable.

13.7 Reproducibility and Repair

The board layout supports:
« manual assembly
« visual fault tracing
« component-level repair

88

 reproduction using basic tools

No specialised processes or proprietary techniques are re-
quired.

Inspection, modification, and repair are treated as normal
outcomes rather than edge cases.

13.8 Included Files and Manufacturing

All design files are provided in standard formats.

There is no vendor lock-in. Any standard PCB manufac-
turer can produce the board.

The design is compatible with low-volume fabrication with-
out special requirements.

13.9 Open Design Files and Ongoing Access

All design files for Spectrum One are provided openly.

Schematics, PCB layout files, and related assets are avail-
able through the project repository:

https://github.com/currenari

The PCB is designed in KiCad. Depending on revision state,
the repository may include:

« native KiCad schematic and PCB files

« manufacturing outputs such as Gerber files

 supporting documentation related to revisions

Where Gerber files are provided, they allow direct man-
ufacturing while preserving access to the full design intent
through source files.

This approach supports learning, transparency, and inde-
pendent reproduction. Future revisions build on an accessi-
ble reference rather than replacing it.

89

13.10 Assembly Notes

Assembly follows the same logical order as the breadboard
build.

Pay particular attention to:

« ESP32 development board orientation

- LED polarity

« LCD backpack orientation

« Button placement

No calibration or tuning is required after assembly.

The device is intended to visualise relative activity and be-
haviour rather than provide calibrated or absolute measure-
ments.

Power is supplied via the ESP32 development board USB
port using a standard 5 V USB supply.

13.11 Closing the Reference Build

By completing this build, you now understand:
« how a breadboard design translates into a stable PCB
« why layout, spacing, and orientation matter in physical
hardware
« how design choices affect assembly, repair, and longevity
« how hardware and firmware can be designed to teach
rather than obscure

Spectrum One is not an endpoint. It is a stable reference.

13.12 Future Expansion and Design Continuity

The current PCB represents a reference implementation
rather than a final form.

Its structure leaves room for future revisions that may ex-
pose additional ESP32 GPIOs or external interfaces for exper-
imentation. That work is intentionally deferred.

Version v0.1.0 focuses on clarity, stability, and learning. Ex-

90

pansion is treated as a separate design direction that benefits
from a reliable baseline.

Both the PCB layout and the firmware structure are de-
signed with this progression in mind.

91

14 Final Distribution and Availability

Spectrum One is documented in this book as a complete ref-
erence system.

The hardware design, firmware behaviour, and physical
layout described here represent the full implementation.
There are no reduced editions, feature-limited variants, or
alternate builds. What is presented in this book is the system
as built and used.

Distribution exists to support direct interaction with the
device itself, either through independent construction or by
working with a completed reference build.

14.1 Reference Scope

This manuscript documents the definitive Spectrum One ref-
erence build.

It describes the hardware, firmware behaviour, assembly
intent, and operational characteristics of the finished device.
The information is presented as a technical reference, without
abstraction, automation, or reliance on external services.

The system described here is intentionally finite and self
contained.

14.2 Physical Builds

In addition to the documentation, physical builds may be of-
fered.

All physical distribution is limited in scale and produced in
small runs. Availability depends on production capacity and
may vary over time. There is no mass production and no per-
manent stock.

92

Two physical formats may be made available.

14.3 Fully Assembled Reference Build

A fully assembled Spectrum One unit may be offered as a com-
pleted reference instrument.

This format provides a known good build identical to the
system described throughout this book. The hardware layout
and firmware behaviour match the reference exactly.

The fully assembled reference build is shown in Figures 13
and 14.

This option is intended for those who want a functioning
reference system without performing assembly themselves.

14.4 Unassembled Hardware Set DIY Kit

An unassembled hardware set may also be offered for those
who want full hands on involvement.

This format is intended for manual assembly, soldering, in-
spection of the physical design, and learning through direct
construction.

The unassembled hardware set includes the custom Spec-
trum One PCB, all required electronic components, and
an ESP32 development board supplied with the reference
firmware pre installed.

The unassembled hardware set is shown in Figure 11.

Final assembly, soldering, and testing are performed by the
builder at their own risk and responsibility.

14.5 Firmware Status

All ESP32 development boards supplied with physical builds
are shipped with the Spectrum One reference firmware
already installed.

After assembly and power up, the device is ready for oper-

93

ation without requiring initial flashing, toolchain setup, or ex-
ternal software.

The firmware is not locked. It may be modified, replaced,
or repurposed using standard ESP32 tooling. The supplied
firmware exists to provide a known working reference build.

14.6 Design Intent

Spectrum One is intentionally offline and self contained.
Once built, the device operates independently. It does not
rely on external services, user accounts, mobile applications,
operating system updates, or third party platforms. Its be-
haviour remains stable, observable, and under the control of
the person using it.
This concludes the Spectrum One reference build.

14.7 Availability Notes

Information about physical builds or unassembled hardware
sets, if offered,
is published at https://currenari.com

Distribution may occur through different channels over
time. Availability is limited and may change without notice.

94

15 Beyond Spectrum One

Spectrum One ends as a complete instrument.

Nothing is missing. Nothing is required. It performs the
task it was built for without qualification or dependency.

What follows is not an extension of that task, but a widening
of perspective.

This chapter exists to show that the value of Spectrum One
does not stop at WiFi, nor does it depend on it.

15.1 The Hardware Is the Instrument

Even with the WiFi firmware removed entirely, the device re-
mains intact as a physical system.

« An ESP32 microcontroller

- A sixteen by two character display

« Aten segment LED bar

« A single, deliberate input

This is not accidental.

This combination predates modern applications, dash-
boards, and touch interfaces. It is the same pattern found
in test equipment, laboratory tools, industrial counters, and
control panels built long before software became abstracted
away from hardware.

Spectrum One inherits that lineage.

Because of this, the board is not bound to a single purpose.
It is a general physical interface designed to make behaviour
visible.

15.2 Making the Invisible Legible

At its core, the hardware does one thing well.

95

It reveals invisible processes in a readable, grounded way.

« The LED bar provides immediate, analogue style feed-
back

« The LCD provides slower, contextual information
- The single button enforces intention rather than interrup-
tion
Together, they form an interface that encourages observa-
tion instead of distraction.

This makes the platform useful wherever behaviour exists
but is usually hidden, smoothed over, or ignored.

15.3 The LED Bar as a Visual Language

The ten segment LED bar is not a single indicator.

Each segment is driven independently. Each may repre-
sent its own threshold, state, or event.

This allows the bar to act as a visual language rather than a
meter.

It may express:

- Intensity or direction

« Accumulation or decay

« Rhythm or change

« Progress or imbalance

« Uncertainty or transition

What matters is not the pattern itself, but that the pattern

remains visible, persistent, and interpretable without expla-
nation.

15.4 Other Directions the Platform Can Take

The following are not products, features, or roadmaps.

They are credible directions the same hardware may take
if the firmware is replaced or extended.

They exist to demonstrate range, not obligation.

96

Counting and Events

The device can function as a physical counter.

« Manual event counting

« External pulse counting

« Rate and activity tracking over time

The LED bar reflects recent intensity. The display holds to-
tals, averages, or session context.

This mirrors classic laboratory and industrial counters
where trust is placed in what can be seen.

Time and Attention

With a stable display and expressive visual output, the board
can operate as a time instrument.

« Focus intervals

« Session pacing

« Break reminders

« Long running timers

The LED bar expresses progress or urgency without noise.
The display anchors the current state.

There are no notifications, no accounts, and no background
services.

Environmental Observation

External sensors may be connected through analogue inputs,
digital lines, or shared buses.

Examples include:

« Light

« Temperature

« Humidity

« Electrical behaviour

« Sound envelopes or vibration

In this role, the device becomes an observer rather than a
precision instrument.

97

It shows trends, change, and presence without pretending
to be laboratory grade.

Learning and Experimentation

The hardware is well suited to learning fundamental embed-
ded concepts.

- State and transition

« Timing and drift

« Scaling and perception

« Filtering and averaging

Each LED segment can represent a state or threshold. The
display provides names and context.

This makes the board useful not as a tutorial, but as a sur-
face for experimentation.

Behavioural and Conceptual Systems

Not all systems measure physical quantities.
The same interface can be used to explore:
+ Habits
« Pacing
« Discipline
 Deliberate slowness
In these cases, the value lies in interaction rather than data.
The device becomes a mirror rather than a sensor.

15.5 What Does Not Change

Regardless of purpose, the design philosophy remains the
same.
« Measured output
Limited interaction
Predictable behaviour
Independence from external services
» No required updates once built

98

The hardware encourages understanding rather than con-
sumption.

15.6 A Finished Instrument, Not a Dead End

Spectrum One ships as a finished system. It does not ask to be
improved.

At the same time, it is not a dead end.

If the firmware is replaced entirely, the board becomes a
general purpose physical interface for ideas that benefit from
being visible, slow, and tangible.

That openness is intentional.

15.7 Closing

Spectrum One tells one story through WiFi.

The hardware itself is capable of telling many others.

What matters is not the signal being observed, but the act
of building, powering, and understanding a system from end
to end.

What this becomes next is up to you.

99

16 Use of Al Tools

English is not my first language. It is the third language I use
on a daily basis, including throughout this manuscript.

For this reason, Al tools were used for grammar checking,
spelling correction, and sentence clarity. Their role was lim-
ited to language assistance.

All technical content, design decisions, explanations, and
conclusions in this book are my own work. The concept of
Spectrum One, its development from the first idea through
breadboard prototypes to an assembled PCB, and the result-
ing reference build were produced independently by me.

All schematics, diagrams, and illustrations were created
by me using Inkscape. All photographs included in this book
are my own and were not post-processed or altered using
Al-based tools.

Al was used as an assistive tool and did not replace author-
ship or responsibility. All responsibility and authorship for
what is written, built, and documented here remain mine.

Jay J. Reszka

100

17 Figures

This section collects the reference figures used throughout
the build.

Each figureis printed onits own page so it can be read at full
size without being squeezed between paragraphs. That also
makes it easier to flip back and forth while wiring, checking
pinouts, or comparing layouts.

The text ends here on purpose. The pages that follow are
single figures with their captions.

101

o

R T

N

I Ei) espaz-wroom-32
: WIFi+BY SoC Inaslde

g Ce
FC [Eeonsrorss

6 NimberHMT-2308001012C | &
i i

g %

|

$

1
|
}

-
.
»
&
1
b4
G
&
®
-]

é.
o
=3
™
o~
(]
0
X ¢
i
o
X
(4
~
S
i)
o
Q>
Q
10
=]
N
Te-
(s
%0
-
Q
~
(=]
B
B
—
o
Q
2
[o)
™,
2
.M

S

g

7

g
L;; -y

X,

T 3

Figure 1: ESP32 Dev Kit V1 (30-pin) board pinout.

103

o

NN
-

GPIO 23
GPIO 22

ESP32-WROOM-32
WIiFi+BY SoC Inside

GPIO 21
GPIO 19
GPIO 18

W N S Le s

8 D1$ D21 RXD TXD D22 D23s

2
=]

GPIO 32
GPIO 33
GPIO 25
GPIO 26
GPIO 27

gy @ -9470 ?ﬂx?' S e) \‘!;‘;Q‘L -
&

k7

GPIO 17
GPIO 16

Son q‘-/’v

GPIO 13
GND
VIN

UINGND BIZ 0121

g3

4

B o i

o
©
o
A
(]
) %0
=
= @
-
(=
#
S
)
e
o
o
= Z
o
‘™
>
X

Power LCD I2C GPIO
Ground LED Bar A GPTO
EN / Control ar ¥Iay

Menu Switch GPIO

Unused / Reference only

Figure 2: Spectrum One GPIO pin assignments.

105

ESP-32

ISM24G 802.11/b/g/n

ROHS

9003

-~
®
<

VN GND UF3D12D14D27026025033032035034 W- VP EN

-
©
©
€
T
€

~RLLERALARRAAN

PWR 5
wp ernl AT 15
pose SEEEaEE 2

= -7
- o

229029035020

%

m
(9]
o
© W
N
o
m
S
A
—
I—|
0

Figure 3: Two ESP32 development boards populated with ESP32-WROOM-32 mod-
ules, showing differences in silkscreen and layout without GPIO behaviour
changes.

107

Mounting Plate
Breadboard 1 Breadboard 2

ESP32 clearance gap

Figure 4: Dual breadboard base with inner power rails removed to create
a central clearance gap.

109

Figure 5: Breadboard modification stages and resulting layout.

111

Capacitor

Tactile Switch (Momentary)

<
4
w
-
4
<

-
o
o
o
o
(2}
)

ESP32 Dev Board

10-LED Bar Array

10 Resistors

Component footprint on the breadboard during the Spectrum One

prototyping phase.

Figure 6:

113

BARL

HLCP—J100_2

1 ko

2 9

3 8

4 7

5 6

6 5 <~
7 4 GND

B 3

g 2

14 1

Ut .I; sl

sl EN GPI023 48
%3 GPIO36 GPID22 4L
3 GPIO39 GPIo1 $Bx
s GPIO34 GPID3 3¢
3 GPI035 GPIn21 49
8 GPI032 GPI01g 4L
7 Grio3s GPID1E 42
8 Gpio2s GPI0s 43x
2 Gpiozs GPID17 44
19 Gpio27 GPID16 43
»Li cpiots GPI04 48x
12 cpioi2 GPI02 42x
m GPIO13 m_u_o»ml.MX
1 1%

GND GND
VIN 3v3 -
PWR_FLAG
sw1 o
GND

SW_Tact_6xbmm_H5mm_PxPy I_I (o o
J.l c =

1
LCD_I12C_XH4_PCBSocket

Complete schematic showing all signal and power connections.

Figure 7

115

Breadboard Left - BBL Breadboard Right - BBR

Figure 8: Top view of the dual breadboard showing completed wiring before
LCD installation.

117

Figure 9: Fully populated breadboard showing the complete Spectrum One
reference build.

119

Figure 10: Early rapid prototyping stage using loose jumper wiring with
LED bar and LCD output.

121

ESP=32
(Y
ML4G 8211

4| RE (€ ROHS

USB C PORT

Figure 11: Complete Spectrum One DIY kit showing all required components.

123

LCD BACKPACK THIS WAY

LCD1602 12C

o L
\DVDDVORS RW £ DO D1 D2.03 D4 D5 D6 D7BLABLK

Field Lewesl
/mmmm Pl m

USB C PORT

0O 0000Q

Assembled Spectrum One PCB showing the populated top side

gure 12:
alongside an unpopulated board.

Fi

125

2
Q
5
m
3

@
v
3
a

Figure 13: Assembled Spectrum One PCB in operation showing LCD output
and active LED bar response.

127

Figure 14: Angled side view of the assembled Spectrum One PCB in operation.

